首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Addition of 1 mM-carbachol to [3H]inositol-labelled rat parotid slices stimulated rapid formation of [3H]inositol 1,3,4,5-tetrakisphosphate, the accumulation of which reached a peak 20 s after stimulation, and then declined rapidly towards a new steady state. The initial rate of formation of inositol 1,3,4,5-tetrakisphosphate was slower than that for inositol 1,4,5-trisphosphate. The radioactivity in [3H]inositol 1,3,4,5-tetrakisphosphate fell quickly in carbachol-stimulated and then atropine-blocked parotid slices, suggesting that it is rapidly metabolized during stimulation. Parotid homogenates rapidly dephosphorylated inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate and, less rapidly, inositol 1,3,4-trisphosphate. Inositol 1,3,4,5-tetrakisphosphate was specifically hydrolysed to a compound with the chromatographic properties of inositol 1,3,4-trisphosphate. The only 3H-labelled phospholipids that we could detect in parotid slices labelled with [3H]inositol for 90 min were phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Parotid homogenates synthesized inositol tetrakisphosphate from inositol 1,4,5-trisphosphate. This activity was dependent on the presence of ATP. We suggest that, during carbachol stimulation of parotid slices, the key event in inositol lipid metabolism is the activation of phosphatidylinositol 4,5-bisphosphate-specific phospholipase C. The inositol 1,4,5-trisphosphate thus liberated is metabolized in two distinct ways; by direct hydrolysis of the 5-phosphate to form inositol 1,4-bisphosphate and by phosphorylation to form inositol 1,3,4,5-tetrakisphosphate and hence, by hydrolysis of this tetrakisphosphate, to form inositol 1,3,4-trisphosphate.  相似文献   

2.
Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver   总被引:29,自引:0,他引:29  
The inositol lipid pools of isolated rat hepatocytes were labeled with [3H]myo-inositol, stimulated maximally with vasopressin and the relative contents of [3H]inositol phosphates were measured by high performance liquid chromatography. Inositol 1,4,5-trisphosphate accumulated rapidly (peak 20 s), while inositol 1,3,4-trisphosphate and a novel inositol phosphate (ascribed to inositol 1,3,4,5-tetrakisphosphate) accumulated at a slower rate over 2 min. Incubation of hepatocytes with 10 mM Li+ prior to vasopressin addition selectively augmented the levels of inositol monophosphate, inositol 1,4-bisphosphate, and inositol 1,3,4-trisphosphate. A kinase was partially purified from liver and brain cortex which catalyzed an ATP-dependent phosphorylation of [3H]inositol 1,4,5-trisphosphate to inositol 1,3,4,5-tetrakisphosphate. Incubation of purified [3H]inositol 1,3,4,5-tetrakisphosphate with diluted liver homogenate produced initially inositol 1,3,4-trisphosphate and subsequently inositol 1,3-bisphosphate, the formation of which could be inhibited by Li+. The data demonstrate that the most probable pathway for the formation of inositol 1,3,4,5-tetrakisphosphate is by 3-phosphorylation of inositol 1,4,5-trisphosphate by a soluble mammalian kinase. Degradation of both compounds occurs first by a Li+-insensitive 5-phosphatase and subsequently by a Li+-sensitive 4-phosphatase. The prolonged accumulation of both inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in vasopressin-stimulated hepatocytes suggest that they have separate second messenger roles, perhaps both relating to Ca2+-signalling events.  相似文献   

3.
High performance liquid chromatography analysis of supernatants from acid-quenched [3H]inositol-labeled parotid acinar cells revealed an inositol pentakisphosphate and three inositol tetrakisphosphates. Two of the latter were identified as the 1,3,4,5 and 1,3,4,6 isomers, whereas the third was probably a mixture of unknown proportions of the 3,4,5,6/1,4,5,6 enantiomeric pair. Methacholine (100 microM) produced a 40-50-fold increase in the levels of inositol trisphosphate (mainly the 1,3,4 isomer) and inositol 1,3,4,5-tetrakisphosphate, but inositol 1,3,4,6-tetrakisphosphate only increased 5-fold. Levels of inositol 3,4,5,6/1,4,5,6-tetrakisphosphate and inositol pentakisphosphate were unaffected by agonist stimulation. Thus, in parotid cells, an agonist-induced increase in both inositol trisphosphate and inositol 1,3,4,6-tetrakisphosphate formation does not result in an increase in the rate of formation of inositol pentakisphosphate. Following the addition of 100 microM atropine to methacholine-stimulated parotid cells, the levels of [3H]inositol 1,3,4,5-tetrakisphosphate fell rapidly, returning to basal levels within 5 min. Inositol trisphosphate was metabolized more slowly and was still elevated 20-fold above basal 5 min after the addition of atropine. Inositol 1,3,4,6-tetrakisphosphate was metabolized much more slowly (t1/2 approximately 15 min). Inositol 1,3,4-trisphosphate metabolism was examined in parotid homogenates as well as in 100,000 x g cytosolic and particulate fractions. Inositol 1,3,4-trisphosphate was both dephosphorylated and phosphorylated. Two inositol tetrakisphosphate products were formed, namely the 1,3,4,6 and 1,3,4,5 isomers. Over 90% of both kinase and phosphatase activities were found in the cytosolic fractions. The ratio of activities of kinase to phosphatase decreased as the levels of inositol 1,3,4-trisphosphate substrate were increased from 1 nM to 10 microM. These data led to the conclusion that the kinetic parameters of the inositol 1,3,4-trisphosphate kinases and phosphatases are such that in stimulated cells, dephosphorylation of inositol 1,3,4-trisphosphate is greatly favored. Inositol 1,3,4-trisphosphate kinase activity was potently inhibited by inositol 3,4,5,6-tetrakisphosphate (IC50 = 0.1-0.2 microM), which leads us to propose that inositol 3,4,5,6-tetrakisphosphate is an endogenous inhibitor of the kinase.  相似文献   

4.
The metabolism of [3H]inositol (1,4,5)-trisphosphate was followed in permeabilized bovine adrenal glomerulosa cells. At low Ca++ concentration (pCa = 7.2), more than 90% of [3H]inositol (1,4,5)-trisphosphate had disappeared within 2 min, while two other metabolites, [3H]inositol (1,3,4)-trisphosphate and [3H]inositol (1,3,4,5)-tetrakisphosphate appeared progressively. At higher Ca++ concentrations (pCa = 5.7 and 4.8), the formation of these two metabolites was markedly increased, but completely abolished if the medium was ATP-depleted. The peak levels for the generation of [3H]inositol (1,3,4,5)-tetrakisphosphate (1 min) preceded those of [3H]inositol (1,3,4)-trisphosphate and were closely correlated. These results suggest that, in adrenal glomerulosa cells, the isomer inositol (1,3,4)-trisphosphate is generated from inositol (1,4,5)-trisphosphate via a calcium-sensitive and ATP-dependent phosphorylation/dephosphorylation pathway involving the formation of inositol (1,3,4,5)-tetrakisphosphate.  相似文献   

5.
Rat hippocampal formation slices were prelabelled with [3H]inositol and stimulated with carbachol for times between 7 s and 3 min. The [3H]inositol metabolites in an acid extract of the slices were resolved with anion-exchange HPLC. Carbachol dramatically increased the concentration of [3H]inositol monophosphate, [3H]inositol bisphosphate (two isomers), [3H]inositol 1,3,4-trisphosphate, [3H]inositol 1,4,5-trisphosphate, and [3H]inositol 1,3,4,5-tetrakisphosphate. The levels of [3H]inositol 1,4,5-trisphosphate rose most rapidly; they were maximally elevated after only 7 s and declined toward control levels in 1 min followed by a more sustained elevation in levels for up to 3 min. When [3H]inositol 1,4,5-trisphosphate was incubated with hippocampal formation homogenates in an ATP-containing buffer it was very rapidly metabolised. After 5 min [3H]inositol 1,4-bisphosphate, [3H]inositol 1,3,4-trisphosphate, and [3H]inositol 1,3,4,5-tetrakisphosphate could be detected in the homogenates. Under similar experimental conditions [3H]inositol 1,3,4,5-tetrakisphosphate is metabolised to [3H]inositol 1,3,4-trisphosphate and an inositol bisphosphate isomer that is not [3H]inositol 1,4-bisphosphate. We conclude that like other tissues the primary event in the hippocampus following carbachol stimulation is the activation of phosphatidylinositol 4,5-bisphosphate selective phospholipase C.  相似文献   

6.
The Arabidopsis genome encodes a family of inositol 1,3,4-trisphosphate 5/6-kinases which form a subgroup of a larger group of ATP-grasp fold proteins. An analysis of the inositol 1,3,4-trisphosphate 5/6-kinase family might, ultimately, be best rewarded by detailed comparison of related enzymes in a single genome. The enzyme encoded by At2G43980, AtITPK4; is an outlier to its family. At2G43980 is expressed in male and female organs of young and mature flowers. AtITPK4 differs from other family members in that it does not display inositol 3,4,5,6-tetrakisphosphate 1-kinase activity; rather, it displays inositol 1,4,5,6-tetrakisphosphate and inositol 1,3,4,5-tetrakisphosphate isomerase activity.  相似文献   

7.
Metabolism of inositol 1,4,5-trisphosphate was investigated in permeabilized guinea-pig hepatocytes. The conversion of [3H]inositol 1,4,5-trisphosphate to a more polar 3H-labelled compound occurred rapidly and was detected as early as 5 s. This material co-eluted from h.p.l.c. with inositol 1,3,4,5 tetrakis[32P]phosphate and is presumably an inositol tetrakisphosphate. A significant increase in the 3H-labelled material co-eluting from h.p.l.c. with inositol 1,3,4-trisphosphate occurred only after a definite lag period. Incubation of permeabilized hepatocytes with inositol 1,3,4,5-tetrakis[32P]phosphate resulted in the formation of 32P-labelled material that co-eluted with inositol 1,3,4-trisphosphate; no inositol 1,4,5-tris[32P]phosphate was produced, suggesting the action of a 5-phosphomonoesterase. The half-time of hydrolysis of inositol 1,3,4,5-tetrakis[32P]phosphate of approx. 1 min was increased to 3 min by 2,3-bisphosphoglyceric acid. Similarly, the rate of production of material tentatively designed as inositol 1,3,4-tris[32P]phosphate from the tetrakisphosphate was reduced by 10 mM-2,3-bisphosphoglyceric acid. In the absence of ATP there was no conversion of [3H]inositol 1,4,5-trisphosphate to [3H]inositol tetrakisphosphate or to [3H]inositol 1,3,4-trisphosphate, which suggests that the 1,3,4 isomer does not result from isomerization of inositol 1,4,5-trisphosphate. The results of this study suggest that the origin of the 1,3,4 isomer of inositol trisphosphate in isolated hepatocytes is inositol 1,3,4,5-tetrakisphosphate and that inositol 1,4,5-trisphosphate is rapidly converted to this tetrakisphosphate. The ability of 2,3-bisphosphoglyceric acid, an inhibitor of 5-phosphomonoesterase of red blood cell membrane, to inhibit the breakdown of the tetrakisphosphate suggests that the enzyme which removes the 5-phosphate from inositol 1,4,5-trisphosphate may also act to convert the tetrakisphosphate to inositol 1,3,4-trisphosphate. It is not known if the role of inositol 1,4,5-trisphosphate kinase is to inactivate inositol 1,4,5-trisphosphate or whether the tetrakisphosphate product may have a messenger function in the cell.  相似文献   

8.
Analysis of inositol phosphate formation in chemoattractant-stimulated human polymorphonuclear leukocytes demonstrated the production of inositol 1,4,5-trisphosphate, inositol 1,3,4-trisphosphate, inositol 1,3,4,5-tetrakisphosphate, inositol 1,4-bisphosphate and another inositol bisphosphate isomer not detected in unstimulated cells. Studies in cell sonicates provided evidence that the previously unidentified inositol bisphosphate isomer is produced via the degradation of inositol 1,3,4-trisphosphate. This unidentified inositol bisphosphate peak was purified by high pressure liquid chromatography, and base hydrolyzed to form a mixture of inositol monophosphate isomers. Based on these studies, the unidentified peak was identified as inositol 3,4-bisphosphate. Identification of this isomer defines a new metabolic product derived from the initial inositol 1,4,5-trisphosphate formation, and also suggests another substrate for the inositol 1-phosphatase.  相似文献   

9.
myo-[3H]Inositol 1,3,4,5,6-pentakisphosphate can be made from myo-[3H]inositol 1,4,5-trisphosphate in a rat brain homogenate or soluble fraction. Although D-myo-inositol 3,4,5,6-tetrakisphosphate can be phosphorylated by a soluble rat brain enzyme to give myo-inositol 1,3,4,5,6-pentakisphosphate, it is not an intermediate in the pathway from myo-inositol 1,4,5-trisphosphate. The intermediates in the above pathway are myo-inositol 1,3,4,5-tetrakisphosphate, myo-inositol 1,3,4-trisphosphate and myo-inositol 1,3,4,6-tetrakisphosphate [Shears, Parry, Tang, Irvine, Michell & Kirk (1987) Biochem. J. 246, 139-147; Balla, Guillemette, Baukal & Catt (1987) J. Biol. Chem. 262, 9952-9955], and it is catalysed by soluble kinase activities of similar anion-exchange mobility and Mr value. Compounds with chromatographic and chemical properties consistent with the structures myo-inositol 1,3,4,5-tetrakisphosphate, myo-inositol 1,3,4,6-tetrakisphosphate and myo-inositol 3,4,5,6-tetrakisphosphate are present in avian erythrocytes, human 1321 N1 astrocytoma cells and primary-cultured murine bone-marrow-derived macrophages. The amounts of these inositol tetrakisphosphates rise upon muscarinic cholinergic stimulation of the astrocytoma cells or stimulation of macrophages with platelet-activating factor.  相似文献   

10.
In extracts of immature soybean (Glycine max [L.] Merr.) seeds inositol tetrakisphosphate was formed from [3H]inositol 1,3,4-trisphosphate but not from [3H]inositol 1,4,5-trisphosphate. Inositol 1,3,4-trisphosphate kinase was purified to a specific activity of 3.55 min−1 mg−1 by polyethylenimine clarification and anion-exchange chromatography. The partially purified enzyme converted [3H]inositol 1,3,4-trisphosphate to inositol 1,3,4,5-tetrakisphosphate as the major product and inositol 1,3,4,6- and/or 1,2,3,4-tetrakisphosphate as the minor product. Subsequent experiments revealed a separate inositol 1,3,4,5-tetrakisphosphate 6-kinase activity, which could link these enzymes to inositol hexakisphosphate synthesis via the previously reported inositol 1,3,4,5,6-pentakisphosphate 2-kinase. The apparent Km values for inositol 1,3,4-trisphosphate kinase were 200 ± 0 nm for inositol 1,3,4-trisphosphate and 171 ± 4 μm for ATP, and the reaction was not reversible. The kinetics were such that no activity could be detected using unlabeled inositol 1,3,4-trisphosphate and [γ-32P]ATP, which suggested that other kinases may have been observed when less purified fractions were incubated with radiolabeled ATP. Inositol 1,3,4-trisphosphate kinase was nonspecifically inhibited more than 80% by various inositol polyphosphates at a concentration of 100 μm.  相似文献   

11.
Previous studies with antigen-stimulated rat basophilic leukemia (RBL-2H3) cells indicated the formation of multiple isomers of each of the various categories of inositol phosphates. The identities of the different isomers have been elucidated by selective labeling of [3H]inositol 1,3,4,5-tetrakisphosphate with [32P]phosphate in the 3'-or 4',5'-positions and by following the metabolism of different radiolabeled inositol phosphates in extracts of RBL-2H3 cells. We report here that inositol 1,3,4,5-tetrakisphosphate, when incubated with the membrane fraction of extracts of RBL-2H3 cells, was converted to inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate. Further dephosphorylation of the inositol polyphosphates proceeded rapidly in whole extracts of cells, although the process was significantly retarded when ATP (2 mM) levels were maintained by an ATP-regenerating system. The degradation of inositol 1,4,5-trisphosphate proceeded with the sequential formation of inositol 1,4-bisphosphate, the inositol 4-monophosphate (with smaller amounts of the 1-monophosphate), and finally inositol. Inositol 1,3,4-trisphosphate, on the other hand, was converted to inositol 1,3-bisphosphate and inositol 3,4-bisphosphate and subsequently to inositol 4-monophosphate and inositol 1-monophosphate (stereoisomeric forms were undetermined). The possible implications of the apparent interconversion between inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in regulating histamine secretion in the RBL-2H3 cells are discussed.  相似文献   

12.
The metabolism of inositol 1,3,4-trisphosphate is a pivotal branch point of inositol phosphate turnover; its dephosphorylation replenishes cellular inositol pools, its phosphorylation at the 6-position supports the synthesis of inositol pentakisphosphate, and its phosphorylation at the 5-position produces inositol 1,3,4,5-tetrakisphosphate (Shears, S.B. (1989) J. Biol. Chem. 264, 19879-19886). In order to increase understanding of the control of inositol-1,3,4-trisphosphate kinase activity, the enzyme was highly purified from rat liver by precipitation with polyethylene glycol, MonoQ ion-exchange chromatography, heparin-agarose affinity chromatography, and a novel affinity chromatography procedure that utilized Affi-Gel resin to which InsP6 was coupled (Marecek, J.F., and Prestwich, G.D. (1991) Tetrahedron Lett. 32, 1863-1866). The final purification was about 26,000-fold, with a 6% yield. This final preparation performed both 5- and 6-kinase activities in the ratio of approximately 1:5. The affinity of the enzyme for inositol 1,3,4-trisphosphate was 0.04 microM, the highest yet determined for an inositol phosphate kinase. Both inositol 1,3,4,5-tetrakisphosphate and inositol 1,3,4,6-tetrakisphosphate were competitive inhibitors of the kinase (Ki values of 2-4 microM). The enzyme was determined to have a molecular mass of 36 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Kinase activity was unaffected by Ca2+/calmodulin, protein kinase A, or protein kinase C.  相似文献   

13.
When [3H]inositol-prelabelled rat parotid-gland slices were stimulated with carbachol, noradrenaline or Substance P, the major inositol trisphosphate produced with prolonged exposure to agonists was, in each case, inositol 1,3,4-trisphosphate. Much lower amounts of radioactivity were present in the inositol 1,4,5-trisphosphate fraction separated by anion-exchange h.p.l.c. Analysis of the inositol trisphosphate head group of phosphatidylinositol bisphosphate in [32P]Pi-labelled parotid glands showed the presence of phosphatidylinositol 4,5-bisphosphate, but no detectable phosphatidylinositol 3,4-bisphosphate. Carbachol-stimulated [3H]inositol-labelled parotid glands contained an inositol polyphosphate with the chromatographic properties and electrophoretic mobility of an inositol tetrakisphosphate, the probable structure of which was determined to be inositol 1,3,4,5-tetrakisphosphate. Since an enzyme in erythrocyte membranes is capable of degrading this tetrakisphosphate to inositol 1,3,4-trisphosphate, it is suggested to be the precursor of inositol 1,3,4-trisphosphate in parotid glands.  相似文献   

14.
Abstract: lonomycin, a Ca2+ ionophore, stimulated phosphoinositide breakdown in rat brain cortical slices incubated in the presence of 1.2 m M Ca2+, but, unlike muscarinic cholinergic stimulation, it had little effect on inositol 1,3,4,5-tetrakisphosphate accumulation. However, at 2 min, the increase in inositol 1,4,5-trisphosphate due to 10 μ M ionomycin was equivalent to that seen with 1μ M carbachol. Phorbol 12-myristate 13-acetate or high K+ (30 μ M ) increased inositol 1,4,5-trisphosphate, but not inositol 1,3,4,5-tetrakisphosphate accumulation. The stimulation of inositol 1,4,5-trisphosphate accumulation due to ionomycin, unlike that seen with carbachol, was abolished in buffer containing 0.2 μ M Ca2+. The increase in inositol 1,3,4,5-tetrakisphosphate accumulation in brain slices due to 1 μ M carbachol ranged from 55 to 68% of that for inositol 1,4,5-trisphosphate. Norepinephrine, NMDA, veratridine, and ouabain also increased inositol 1,4,5-tris-phosphate, but had minimal effects on inositol 1,3,4,5-tetrakisphosphate accumulation. These results suggest that there is something unique about the stimulation of inositol 1,3,4,5-tetrakisphosphate accumulation by carbachol, which is also the only one of these agents that is able to activate phosphoinositidase Cβ, in isolated rat brain membranes.  相似文献   

15.
Dephosphorylation of inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] was measured in both the soluble and the particulate fractions of rat brain homogenates. Analysis of the hydrolysis of [4,5-32P]Ins(1,3,4,5)P4 showed that for both fractions the 5-phosphate of Ins(1,3,4,5)P4 was removed and inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] was specifically produced. In the soluble fraction, Ins(1,3,4)P3 was further hydrolysed at the 1-phosphate position to inositol 3,4-bisphosphate[Ins(3,4)P2]. DEAE-cellulose chromatography of the soluble fraction separated the phosphatase activities into three peaks. The first hydrolysed both Ins(1,3,4,5)P4 and inositol 1,4,5-trisphosphate, the second inositol 1-phosphate and the third Ins(1,3,4)P3 and inositol 1,4-bisphosphate, [Ins(1,4)P2]. Further purification of the third peak on either Sephacryl S-200 or Blue Sepharose could not dissociate these two activities [i.e. with Ins(1,4)P2 and Ins(1,3,4)P3 as substrates]. The dephosphorylation of Ins(1,3,4)P3 could be inhibited by the addition of Li+.  相似文献   

16.
Human erythrocyte membranes metabolize inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] to inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] in the presence of Mg2+. In the absence of Mg2+ a less rapid conversion of Ins(1,3,4,5)P4 into Ins(1,4,5)P3 was revealed. Such an enzyme activity, if present in hormonally sensitive cells, could provide a mechanism for maintaining constant concentrations of Ins(1,4,5)P3 and Ins(1,3,4,5)P4, important for stimulation of Ca2+ entry after Ca2+ mobilization.  相似文献   

17.
Inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) metabolism has been studied in liver homogenates and in 100,000 x g supernatant and particulate fractions. When liver homogenates were incubated in an "intracellular" medium containing 5 mM MgATP, equal proportions of Ins(1,3,4)P3 were dephosphorylated and phosphorylated. Two inositol tetrakisphosphate (InsP4) products and an inositol pentakisphosphate (InsP5) were detected. The InsP4 isomers were unequivocally identified as inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) and inositol 1,3,4,6-tetrakisphosphate (Ins(1,3,4,6)P4) by high performance liquid chromatography separation of inositol phosphates, periodate oxidation, alkaline hydrolysis, and stereo-specific polyol dehydrogenase. Ins(1,3,4)P3 5-kinase is a novel enzyme activity and accounted for 16% of the total Ins(1,3,4)P3 phosphorylation. Ins(1,3,4,6)P4 was also shown to be further phosphorylated to inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P5) by a kinase not previously known to occur in liver. About 75% of Ins(1,3,4)P3 kinase activities were soluble and were partly purified by anion-exchange fast protein liquid chromatography. The two Ins(1,3,4)P3 kinase activities eluted as a single peak that was well resolved from Ins(1,3,4)P3 phosphatase, Ins(1,3,4,6)P4 5-kinase, and Ins(1,3,4,5)P4 5-phosphatase activities. A further novel observation was that 10 microM Ins(1,3,4,5)P4 inhibited Ins(1,3,4)P3 kinase activities by 60%.  相似文献   

18.
Lysed mouse thymocytes release [3H]inositol 1,4,5 trisphosphate from [3H]inositol-labelled phosphatidyl inositol 4,5-bisphosphate in response to GTP gamma S, and rapidly phosphorylate [3H]inositol 1,4,5-trisphosphate to [3H]inositol 1,3,4,5-tetrakisphosphate. The rate of phosphorylation is increased approximately 7-fold when the free [Ca2+] in the lysate is increased from 0.1 to 1 microM, the range in which the cytosolic free [Ca2+] increases in intact thymocytes in response to the mitogen concanavalin A. Stimulation of the intact cells with concanavalin A also results in a rapid and sustained increase in the amount of inositol 1,3,4,5-tetrakisphosphate, and a much smaller transient increase in 1,4,5-trisphosphate. Lowering [Ca2+] in the medium from 0.4 mM to 0.1 microM before addition of concanavalin A reduces accumulation of inositol 1,3,4,5-tetrakisphosphate by at least 3-fold whereas the increase in inositol 1,4,5-trisphosphate is sustained rather than transient. The data imply that in normal medium the activity of the inositol 1,4,5-trisphosphate kinase increases substantially in response to the rise in cytosolic free [Ca2+] generated by concanavalin A, accounting for both the transient accumulation of inositol 1,4,5-trisphosphate and the sustained high levels of inositol 1,3,4,5-tetrakisphosphate. Inositol 1,3,4,5-tetrakisphosphate is a strong candidate for the second messenger for Ca2+ entry across the plasma membrane. This would imply that the inositol polyphosphates regulate both Ca2+ entry and intracellular Ca2+ release, with feedback control of the inositol polyphosphate levels by Ca2+.  相似文献   

19.
Angiotensin stimulates rapid and prominent increases in inositol polyphosphates and their metabolites in bovine glomerulosa cells labeled with [3H]inositol. In addition to the early formation of inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) and inositol 1,3,4-trisphosphate (Ins-1,3,4-P3), as well as their intermediate product, inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4), delayed increases in two new InsP4 isomers were consistently observed by high resolution high performance liquid chromatography. Studies on the metabolism of purified Ins-1,3,4,5-P4 preparations, labeled with [3H]inositol and 32P to monitor sites of dephosphorylation, were performed in permeabilized glomerulosa cells. In addition to rapid degradation of Ins-1,3,4,5-P3 to Ins-1,3,4-P3 and then to Ins-3,4-P2, there was delayed formation of one of the putative InsP4 isomers observed during AII stimulation in intact cells. The kinetics of formation of the new InsP4 isomer, and the lack of phosphate in its 5 position based on isotope ratios, were consistent with its origin from Ins-1,3,4-P3. This was confirmed by the conversion of [3H]Ins-1,3,4-P3 to the new InsP4 isomer in permeabilized cells by a kinase distinct from that which phosphorylates Ins-1,4,5-P3. These results have demonstrated that the dephosphorylation sequence of Ins-1,4,5-P3 metabolism is accompanied by a complex cycle of higher phosphorylations with formation of new intermediates of potential significance in cellular regulation.  相似文献   

20.
In the rat pancreatoma cell line, AR4-2J, three inositol tetrakisphosphate isomers were identified, (1,3,4,6), (1,3,4,5), (3,4,5,6), which were increased during activation of phospholipase C by bombesin. Two other isomers were identified, (1,4,5,6) and a fifth isomer which was either (1,2,3,4) or (1,2,3,6), which have not previously been detected in any cell type. To study the metabolic interrelationships between these compounds and inositol 1,3,4,5,6-pentakisphosphate in the intact cell, their turnover was assessed under different protocols of [3H]myo-inositol labeling; the inositol phosphates were labeled to near steady state or under conditions where either rapidly or slowly turning over inositol polyphosphates were preferentially labeled. The relative specific radioactivities of inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate, inositol 1,3,4-trisphosphate, and inositol 1,3,4,6-tetrakisphosphate were very similar in bombesin-stimulated cells, consistent with the pathway for the conversion of inositol 1,4,5-trisphosphate to the other three inositol polyphosphates. Compared with these inositol phosphates, the turnover of inositol 1,3,4,5,6-pentakisphosphate was slow. An accumulation of radioactivity into inositol 1,3,4,5,6-pentakisphosphate was observed only under labeling conditions where its relative specific radioactivity was substantially below that of inositol 1,3,4,6-tetrakisphosphate. This indicated that the precursor for de novo synthesis of inositol 1,3,4,5,6-pentakisphosphate was inositol 1,3,4,6-tetrakisphosphate. Bombesin stimulated the net breakdown of inositol 1,3,4,5,6-pentakisphosphate and increased the level of inositol 3,4,5,6-tetrakisphosphate; the relative specific radioactivities of these two compounds were similar under all conditions. These data led to the novel proposal that inositol 3,4,5,6-tetrakisphosphate is the product of inositol 1,3,4,5,6-pentakisphosphate breakdown. This reaction was apparently stimulated by a regulated change in the enzyme(s) which interconvert inositol 1,3,4,5,6-pentakisphosphate and inositol 3,4,5,6-tetrakisphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号