首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dimeric enzyme glutathione S-transferase B is composed of two dissimilar subunits, referred to as Ya and Yc. Transferase B (YaYc) and two other transferases that are homodimers of the individual Ya and Yc subunits were purified from rat liver. Inhibition of these three enzymes by Indocyanine Green, biliverdin and several bile acids was investigated at different values of pH (range 6.0-8.0). Indocyanine Green, biliverdin and chenodeoxycholate were found to be effective inhibitors of transferases YaYc and YcYc at low (pH 6.0) but not high (pH 8.0) values of pH. Between these extremes of pH intermediate degrees of inhibition were observed. Cholate and taurochenodeoxycholate, however, were ineffective inhibitors of transferase YcYc at all values of pH. The observed differences in bile acids appeared to be due, in part, to differences in their state of ionization. In contrast with the above results, transferase YaYa was inhibited by at least 80% by the non-substrate ligands at all values of pH. These effects of pH on the three transferases could not be accounted for by pH-induced changes in the enzyme's affinity for the inhibitor. Thus those glutathione S-transferases that contain the Yc subunit are able to act simultaneously as both enzymes and binding proteins. In addition to enzyme structure, the state of ionization of the non-substrate ligands may also influence whether the transferases can perform both functions simultaneously.  相似文献   

2.
The dimeric enzyme glutathione S-transferase B is composed of two dissimilar subunits, referred to as Ya and Yc. Transferase YaYc and the YaYa homodimer were purified from rat liver cytosol. An enol ester derivative of bilirubin (bilirubin-Woodward's reagent K) was prepared and used to label covalently the nonsubstrate ligand-binding site on these two proteins. There was a linear relationship between the amount of bilirubin-Woodward's reagent K added to the reaction mixture and the amount of labeling achieved up to a ratio of 2:1 (bilirubin-Woodward's reagent K: protein-YaYc). A maximum of 0.87 mol of label bound per mol of transferase YaYc. At higher molar ratios, the label appeared to also be binding at a second site on the enzyme. The label blocked the nonsubstrate ligand-binding site of the two transferases but not the catalytic site. The divalent reagent was shown to label equally the Ya and Yc subunits of transferase YaYc, suggesting that the single high affinity bilirubin-binding site present on this protein is formed by an interaction between the subunits rather than residing on a specific subunit. At low ratios of label to protein, bilirubin-Woodward's reagent K appears to label specifically the nonsubstrate ligand-binding site of two forms of glutathione S-transferase, and use of this label should allow for the localization of the nonsubstrate ligand-binding site in the primary amino acid sequence of the Ya and Yc subunits.  相似文献   

3.
The two dimeric lithocholic acid-binding proteins previously identified as ligandin (YaYa) and glutathione S-transferase B (YaYc) were isolated from rat liver cytosol. These proteins have molecular weights of 44000 and 47000 respectively. The recovery of these two proteins from liver was not affected by the addition of the proteinase inhibitor Trasylol. No spontaneous interconversion between these two proteins was observed on storage. YaYa and YaYc proteins yielded peptides of identical molecular weight after limited digestion with Staphylococcus aureus V8 proteinase. Analytical and preparative tryptic-digest peptide 'maps' showed that all the soluble peptides obtained from YaYa protein were also recovered from YaYc protein. Approximately six extra soluble peptides, which were not recovered from YaYa protein, were obtained from the tryptic digest of YaYc protein. Subdigests of the insoluble tryptic-digest 'cores' also resulted in the recovery of identical peptides from both proteins. Evidence is presented that the Ya subunit possessed by both proteins is identical; glutathione S transferase B is a hybrid of ligandin and glutathione S-transferase AA. The Ya monomer is responsible for lithocholate binding.  相似文献   

4.
Monoclonal antibodies to ligandin (YaYa) and glutathione (GSH) S-transferase B (YaYc) were produced by hybridomas derived from the fusion of mouse myeloma cells and spleen cells of mice immunized with the YaYa or YaYc proteins, respectively. Enzyme-linked immunosorbent assay was used to screen for antibody-producing clones. Immunoblotting of the subunits of transferase B, ligandin, and another GSH S-transferase containing Yb subunits showed that the monoclonal antibodies produced by two anti-YaYa subclones recognized the Ya subunits of both ligandin and transferase B, but they did not bind Yc or Yb subunits. It was also revealed that antibodies produced by several anti-YaYc subclones recognized the Yc subunit, but not the Ya subunit of the antigen which was used for the immunization of the mice. However, these monoclonal antibodies did bind the Ya subunit of ligandin. These results indicate that the Ya subunits of GSH S-transferase B and of ligandin do share at least one common determinant. However, these two Ya subunits are structurally distinct as evidenced by their differences in binding by monoclonal anti-YaYc antibodies.  相似文献   

5.
Six forms of glutathione S-transferases designated as GSH S-transferase I (pI 8.8), II (pI 7.2), III (pI 6.8), IV (pI 6.0), V (pI 5.3) and VI (pI 4.8) have been purified from rat lung. GSH S-transferase I (pI 8.8) is a homodimer of Mr 25,000 subunits; GSH S-transferases II (pI 7.2) and VI (pI 4.8) are homodimers of Mr 22,000 subunits; and GSH S-transferases III (pI 6.8), IV (pI 6.0) and V (pI 5.3) are dimers composed of Mr 23,500 and 22,000 subunits. Immunological properties, peptide fragmentation analysis, and substrate specificity data indicate that Mr 22,000, 23,500 and 25,000, are distinct from each other and correspond to Ya, Yb, and Yc subunits, respectively, of rat liver.  相似文献   

6.
Identity of ligandin in rat testis and liver.   总被引:2,自引:2,他引:0       下载免费PDF全文
1. One of the main problems in the field of multifunctional proteins such as ligandin is the possibility that multiple forms and isoproteins may exist. Because liver ligandin [GSH (reduced glutathione) S-transferase B] consists of equal amounts of Ya (22 000 Da) and Yc (25 000 Da) subunits, and testis ligandin, prepared by the standard technique of anion-exchange and molecular-exclusion chromatography, contains more Yc subunit than Ya, it has been claimed that testis and liver ligandin are different entities. 2. We purified testis ligandin by immunoaffinity chromatography and have obtained a product identical with liver ligandin (Yc = Ya). This suggests that the differences previously described may be due to contamination of testis ligandin by a closely related species. In fact sodium dodecyl sulphate/polyacrylamide-gel-electrophoretic analysis of testis GSH S-transferases separated by CM-cellulose chromatography showed that GSH S-transferase AA, present in large amounts, migrated in the same region as Yc subunit. 3. Testis ligandin prepared by the standard technique was similar to that reported [Bhargava, Ohmi, Listowsky & Arias (1980) J. Biol. Chem. 255, 724-727] and contained more Yc subunit than Ya. CM-cellulose chromatography of this 'pure' preparation revealed significant amounts of GSH S-transferase AA migrating as Yc subunit, in addition to ligandin consisting of equal amounts of Ya and Yc subunits. 4. Our studies show that testis ligandin is identical with liver ligandin. Previously described differences are due to a contaminant identified as GSH S-transferase AA.  相似文献   

7.
Ciprofibrate (2-[4-(2,2-dichlorocyclopropyl) phenoxy]2-methyl propionic acid) which is a hypolipidemic agent and has been shown to cause peroxisome proliferation, non-competitively inhibits glutathione S-transferase activity of rat liver, both in vivo and in vitro. Among all the glutathione S-transferases of rat liver, ligandin is maximally inhibited by ciprofibrate. Studies with the purified glutathione S-transferases of rat liver indicate that the affinities of different subunits of liver enzymes for ciprofibrate are in the order Ya greater than Yb, Yb' greater than Yc.  相似文献   

8.
Rat liver glutathione S-transferases have previously been defined by their elution behaviour from DEAE-cellulose and CM-cellulose as M, E, D, C, B, A and AA. These enzymes are dimeric proteins which comprise subunits of mol.wt. 22 000 (Ya), 23 500 (Yb) or 25 000 (Yc). Evidence is presented that YaYa protein, one of two previously described lithocholate-binding proteins which exhibit transferase activity, is an additional enzyme which is not included in the M, E, D, C, B, A and AA nomenclature. We therefore propose that this enzyme is designated transferase YaYa. Transferases YaYa, C, A and AA have molecular weights of 44 000, 47 000, 47 000 and 50 000 respectively and each comprises two subunits of identical size. These enzymes were purified to allow a study of their structural and functional relationships. In addition, transferase A was further resolved into three forms (A1, A2 and A3) which possess identical activities and structures and appear to be the product of a single gene. Transferases YaYa, C, A and AA each had distinct enzymic properties and were inhibited by cholate. The recently proposed proteolytic model, which attributes the presence of multiple forms of glutathione S-transferase activity to partial proteolysis of transferase AA, was tested and shown to be highly improbable. Peptide maps showed significant differences between transferases YaYa, C, A and AA. Immunotitration studies demonstrated that antisera raised against transferases YaYa and C did not precipitate transferase AA.  相似文献   

9.
Three cationic glutathione S-transferase forms isolated from rat liver were characterized as dimers that originated from different combinations of two subunit types, Ya and Yc. The cationic forms were purified using lysyl glutathione affinity matrices and were chromatographically resolved from anionic glutathione S-transferases that contain Yb subunits. The three classes of cationic transferase exhibited similar specific activities with 1-chloro-2,4-dinitrobenzene as a substrate, all forms cross-reacted with antibodies to glutathione S-transferase B, and all had comparable secondary structures and tryptophan fluorescence properties. In spite of those similarities, the Yc-containing forms were clearly distinguishable from Ya forms on the basis of characteristic differences in circular dichroic patterns associated with their aromatic side chains. All cationic transferases bound bilirubin with stoichiometric ratios of 1 mol/dimeric protein molecule, but discrete differences in mode of binding were ascribed to forms containing Ya subunits as compared to Yc dimers. Binding to Yc forms was of lower affinity and may be associated with the catalytic region of the protein since glutathione effectively displaced bilirubin from the Yc component.  相似文献   

10.
Purified ligandin (Y-protein) a 46000-dalton protein, has been shown to consist of two subunit species (mol. wts. 22 000 and 24 000) on discontinuous polyacrylamide gel electrophoresis in sodium dodecyl sulphate. This technique was used to define further the nature of these subunits. The Y sulphobromophthalein-binding fraction of rat hepatic cytosol was shown to contain three major subunit bands designated subunit Ya, subunit Yb and subunit Yc in ascending order of size. Purified ligandin was found to comprise Ya and Yc subunit species, and also gave two bands on isoelectric focusing. The two subunit species in purified ligandin were partially separated by an additional purification step. Antiserum to ligandin reacted mono-specifically with the purified protein, as well as hepatic, renal and small intestinal mucosa cytosol, but gave lines of identity and partial identity with cytosol from testis, ovary and adrenal gland. The Y fraction of testis was found to contain only Yb and Yc species, while all three major bands were found in liver, kidney and small intestinal mucosa. Phenobarbital treatment increased the concentration of Ya and Yb in the liver, but had little effect on Yc. These findings suggest that the Ya and Yc ligandin subunits are the monomers of two proteins: YaYa and YcYc.  相似文献   

11.
On the multiplicity of rat liver glutathione S-transferases   总被引:7,自引:0,他引:7  
Rat liver glutathione S-transferases have been purified to apparent electrophoretic homogeneity by S-hexylglutathione-linked Sepharose 6B affinity chromatography and CM-cellulose column chromatography. At least 11 transferase activity peaks can be resolved including five Yb size homodimeric isozymes, two Yc size homodimeric isozymes, one Ya homodimeric isozyme, one Y alpha homodimeric isozyme, and two Ya-Yc heterodimeric isozymes. Distribution of the GSH peroxidase activity among the CM-cellulose column fractions suggests the existence of further multiplicity in this isozyme family. Substrate specificity patterns of the Yb subunit isozymes revealed a possibility that each of the five Yb-containing isozymes is composed of a different homodimeric Yb size subunit composition. Our findings on the increasing multiplicity of glutathione S-transferase isozymes are consistent with the notion that multiple isozymes of overlapping substrate specificities are required to detoxify a multitude of xenobiotics in addition to serving other important physiological functions.  相似文献   

12.
Human liver glutathione S-transferases (GSH S-transferases) were fractionated into cationic and anionic proteins. During fractionation with (NH4)2SO4 the anionic GSH S-transferases are concentrated in the 65%-saturated-(NH4)2SO4 fraction, whereas the cationic GSH S-transferases separate in the 80%-saturated-(NH4)2SO4 fraction. From the 65%-saturated-(NH4)2SO4 fraction two new anionic GSH S-transferases, omega and psi, were purified to homogeneity by using ion-exchange chromatography on DEAE-cellulose, Sephadex G-200 gel filtration, affinity chromatography on GSH bound to epoxy-activated Sepharose and isoelectric focusing. By a similar procedure, cationic GSH S-transferases were purified from the 80%-saturated-(NH4)2SO4 fraction. Isoelectric points of GSH S-transferases omega and psi are 4.6 and 5.4 respectively. GSH S-transferase omega is the major anionic GSH S-transferase of human liver, whereas GSH S-transferase psi is present only in traces. The subunit mol.wt. of GSH S-transferase omega is about 22500, whereas that of cationic GSH S-transferases is about 24500. Kinetic and structural properties as well as the amino acid composition of GSH S-transferase omega are described. The antibodies raised against cationic GSH S-transferases cross-react with GSH S-transferase omega. There are significant differences between the catalytic properties of GSH S-transferase omega and the cationic GSH S-transferases. GSH peroxidase II activity is displayed by all five cationic GSH S-transferases, whereas both anionic GSH S-transferases do not display this activity.  相似文献   

13.
The glutathione S-transferases are a family of dimeric enzymes. Three isozymes from the alpha family, termed YaYa, YaYc, and YcYc, and three from the mu family, termed Yb1Yb1, Yb1Yb2, and Yb2Yb2, were purified from rat liver. Binding studies were performed by equilibrium dialysis using a radiolabeled product, S(-)[14C](dinitrophenyl)glutathione. Each isozyme contained two independent binding sites which had equal affinity for the ligand. The presence of two independent active sites per enzyme dimer suggests that each subunit contains a complete active site. This conclusion was examined further using radiation inactivation which also allowed for assessment of the importance of subunit interactions in catalytic activity. The activity target size of YaYa (47 kDa) was significantly larger than the protein monomer target size (31 kDa); similarly the activity target size of YaYc was that of the dimer (54 kDa). In contrast, the activity target sizes of Yb1Yb1 and Yb2Yb2 were the same, being 35 and 29 kDa, respectively, and the protein monomer target size of Yb1Yb1 also was similar, being 32 kDa. These data indicate that interactions between subunits are critical for the maintenance of enzymatic activity of alpha class enzymes whereas each subunit of the two mu class proteins is capable of independent catalytic activity.  相似文献   

14.
With the use of cDNA probes reverse transcribed from purified glutathione S-transferase mRNA templates, four cDNA clones complementary to transferase mRNAs have been identified and characterized. Two clones, pGTB38 and pGTB34, have cDNA inserts of approximately 950 and 900 base pairs, respectively, and hybridize to a mRNA(s) whose size is approximately 980 nucleotides. In hybrid-select translation experiments, pGTB38 and pGTB34 select mRNAs specific for the Ya and Yc subunits of rat liver glutathione S-transferases. Clone pGTB33, which harbors a truncated cDNA insert, hybrid-selects only the Ya mRNA. All of the clones, pGTB38, pGTB34, and pGTB33, hybrid-select another mRNA which is specific for a polypeptide with an electrophoretic mobility slightly greater than the Ya subunit. The entire nucleotide sequence of the full length clone, pGTB38, has been determined and the complete amino acid sequence of the corresponding polypeptide has been deduced. The mRNA codes for a protein comprising 222 amino acids with Mr = 25,547. We have also identified a cDNA clone complementary to a Yb mRNA of the rat liver glutathione S-transferases. This clone, pGTA/C36, hybrid-selects only Yb mRNA(s) and hybridizes to a mRNA(s) whose size is approximately 1200 nucleotides. Although the Ya, Yb, and Yc mRNAs are elevated coordinately by phenobarbital and 3-methylcholanthrene, the Ya-Yc mRNAs are induced to a much greater extent compared to the Yb mRNA(s). These data suggest that the mRNAs for each transferase isozyme are regulated independently.  相似文献   

15.
Using polysomal immunoselected rat liver glutathione S-transferase mRNAs, we have constructed cDNA clones using DNA polymerase I, RNase H, and Escherichia coli ligase (NAD+)-mediated second strand cDNA synthesis as described by Gubler and Hoffman (Gubler, U., and Hoffman, B. S. (1983) Gene 25, 263-269). Recombinant clone, pGTB42, contained a cDNA insert of 900 base pairs whose 3' end showed specificity for the Yc mRNA in hybrid-select translation experiments. The nucleotide sequence of pGTB42 has been determined, and the complete amino acid sequence of a Yc subunit has been deduced. The cDNA clone contains an open reading frame of 663 nucleotides encoding a polypeptide comprising 221 amino acids with a molecular weight of 25,322. The NH2-terminal sequence deduced from pGTB42 is in agreement with the first 39 amino acids determined for a Ya-Yc heterodimer by conventional protein-sequencing techniques. A comparison of the nucleotide sequence of pGTB42 with the sequence of a Ya clone, pGTB38, described previously by our laboratory (Pickett, C. B., Telakowski-Hopkins, C. A., Ding, G. J.-F., Argenbright, L., and Lu, A.Y.H. (1984) J. Biol. Chem. 259, 5182-5188) reveals a sequence homology of 66% over the same regions of both clones; however, the 5'- and 3'-untranslated regions of the Ya and Yc mRNAs are totally divergent in their sequences. The overall amino acid sequence homology between the Ya and Yc subunits is 68%, however, the NH2-terminal domain is more highly conserved than the middle or carboxyl-terminal domains. Our data suggest that the Ya and Yc subunits of the rat liver glutathione S-transferases are products of two different mRNAs which are derived from two related yet different genes.  相似文献   

16.
17.
A cDNA library prepared from poly(A)+ RNA of 2-acetylaminofluorene (AAF) induced rat hepatocellular carcinoma was screened by synthetic DNA probes deduced from a partial amino acid sequence of glutathione S-transferase P subunit that had been isolated from the tumor by two-dimensional gel electrophoresis. One of the four clones analyzed contained an mRNA region encoding the total amino acid sequence of this enzyme subunit and the complete 3'-noncoding region. The nucleotide sequence indicates that this enzyme subunit has 209 amino acids (calculated Mr=23,307) distinct from other glutathione S-transferase subunits such as Ya and Yc. Comparison of the amino acid sequences between these proteins indicates that glutathione S-transferase P subunit gene has been evolved from the ancestral gene at an earlier stage than the separation of Ya and Yc and that there are at least three domains having a considerable homology with each other in these enzymes. The very large increase of this mRNA in chemically induced hepatocellular carcinoma suggests a characteristic derepression of this gene during hepatocarcinogenesis.  相似文献   

18.
High multiplicity of GSH S-transferases (GST) with overlapping substrate specificities may be essential to their multiple roles in xenobiotics metabolism, drug biotransformation, and protection against peroxidative damage. Subunit composition analysis of rat liver GSH S-transferases indicated that heterodimer associations were not random, limiting the generation of GST isozyme multiplicity. We have analyzed a Yb subunit cDNA clone, pGTR187, that may correspond to an anionic Yb subunit sequence. Comparison with other GSH S-transferase cDNA sequences and blot hybridization results indicates that the multiple Yb subunits are encoded by a multigene family. This Yb subunit sequence has very limited homology to Ya and Yc subunit cDNAs, but slightly more sequence homology to the Yp subunit cDNA. More consistent sequence homology is found at the amino acid level with 28% conservation throughout the coding sequences. These results and results published from other laboratories clearly indicate that rat GSH S-transferases are products of at least four different gene families that constitute a supergene family. Conceptually, the supergene family may encode GSH S-transferases of very different structures that are essential to metabolize a multitude of xenobiotics in addition to serving other physiologically important functions.  相似文献   

19.
Messenger RNA extracted from the livers of normal, phenobarbital-treated, and trans-stilbene oxide-treated rats was translated in a mRNA-dependent protein-synthesizing system. Immunoprecipitation of the translation products by antibodies against the Ya and Yc subunits of glutathione S-transferase detected two polypeptides of molecular weights 23,500 and 25,000. Subsequently, a clone containing glutathione S-transferase sequences was identified from a rat liver double-stranded cDNA library that had been prepared by homopolymeric tailing and cloning into the Pst I site of pBR322. Confirmation of the identity of the clone was obtained by recloning the 550-bp insert DNA into the phage vector M13 and utilizing the single strand recombinant phage DNA in specific hybrid selection of mRNA followed by translation and immunoprecipitation with antibodies to the Ya and Yc subunits. This recombinant phage, M13GST94, was also utilized in a new technique to synthesize 32P-labeled cDNA specific to the glutathione S-transferase insert DNA that was used subsequently in RNA excess solution hybridization to determine the relative concentration of glutathione S-transferase mRNA. Phenobarbital treatment resulted in a 3.2-fold increase in glutathione S-transferase mRNA over levels found in control rats, while trans-stilbene oxide increased glutathione S-transferase mRNA levels 5.7-fold. The DNA sequence of the clone was determined and utilized to propose a partial amino acid sequence.  相似文献   

20.
A hitherto unknown cytosolic glutathione S-transferase from rat liver was discovered and a method developed for its purification to apparent homogeneity. This enzyme had several properties that distinguished it from other glutathione S-transferases, and it was named glutathione S-transferase X. The purification procedure involved DEAE-cellulose chromatography, (NH4)2SO4 precipitation, affinity chromatography on Sepharose 4B to which glutathione was coupled and CM-cellulose chromatography, and allowed the isolation of glutathione S-transferases X, A, B and C in relatively large quantities suitable for the investigation of the toxicological role of these enzymes. Like glutathione S-transferase M, but unlike glutathione S-transferases AA, A, B, C, D and E, glutathione S-transferase X was retained on DEAE-cellulose. The end product, which was purified from rat liver 20 000 g supernatant about 50-fold, as determined with 1-chloro-2,4-dinitrobenzene as substrate and about 90-fold with the 1,2-dichloro-4-nitrobenzene as substrate, was judged to be homogeneous by several criteria, including sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, isoelectric focusing and immunoelectrophoresis. Results from sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and gel filtration indicated that transferase X was a dimer with Mr about 45 000 composed of subunits with Mr 23 500. The isoelectric point of glutathione S-transferase X was 6.9, which is different from those of most of the other glutathione S-transferases (AA, A, B and C). The amino acid composition of transferase X was similar to that of transferase C. Immunoelectrophoresis of glutathione S-transferases A, C and X and precipitation of various combinations of these antigens by antisera raised against glutathione S-transferase X or C revealed that the glutathione S-transferases A, C and X have different electrophoretic mobilities, and indicated that transferase X is immunologically similar to transferase C, less similar to transferase A and not cross-reactive to transferases B and E. In contrast with transferases B and AA, glutathione S-transferase X did not bind cholic acid, which, together with the determination of the Mr, shows that it does not possess subunits Ya or Yc. Glutathione S-transferase X did not catalyse the reaction of menaphthyl sulphate with glutathione, and was in this respect dissimilar to glutathione S-transferase M; however, it conjugated 1,2-dichloro-4-nitrobenzene very rapidly, in contrast with transferases AA, B, D and E, which were nearly inactive towards that substrate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号