共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Purification and properties of threonine aldolase from Clostridium pasteurianum. 总被引:1,自引:0,他引:1 下载免费PDF全文
R H Dainty 《The Biochemical journal》1967,104(3):46-46P
6.
E J Laishley 《Canadian journal of microbiology》1975,21(11):1711-1718
An intracellular invertase was induced in cultures of Clostridium pasteurianum utilizing sucrose as its carbon source for growth. This enzyme synthesis could be repressed by the addition of fructose of a sucrose-growing culture. In contrast, invertase activity was not affected by the addition of glucose to sucrose-growing cells and this enzyme could be induced in a glucose-metabolizing culture by the addition of sucrose. This enzyme was purified 10.5-fold over the induced lese, EC 3.2.1.26) by substrate-specificity studies. Invertase had a pH optimum of 6.5 and an apparent Km of 79.5 mM for sucrose, and required high concentration of potassium phosphate for maximum activity. Invertase was completely inactivated by a 2-min heat treatment at 60 degrees C. This enzyme was strongly inhibited by p-hydroxymercuribenzoate (pCMB) and weakly inhibited by 5,5'-dithiobis(2-nitrobenzoic acid), while cysteine could substantially reverse pCMB) inhibition, suggesting that sulfhydryl group(s) were necessary for invertase activity. 相似文献
7.
8.
Dithionite reduced azoferredoxin and molybdoferredoxin from W5 were oxidatively titrated with various electron acceptors. The AzoFd gave up 0.87 electrons per AzoFd monomer (27,500 mol. wt.). The oxidation reduction potential of AzoFd, determined by equilibrium with redox dyes, was ?0.240 V. Dithionite reduced MoFd gave up 3.6 electrons per MoFd tetramer (220,000 mol. wt.). The oxidation reduction potential for MoFd was ?0.070 V. Because the potential of MoFd half cell is so positive, the electrons removed during this oxidation may not be those that reduce dinitrogen. 相似文献
9.
The purification to homogeneity of the non-heme iron protein, sometimes referred to as either "red protein" or "paramagnetic protein", from Clostridium pasteurianum W5 extracts is described and its physicochemical properties studied. This paramagnetic protein (g= 1.94) has a molecular weight of about 25000 and contains two iron and two acid-labile sulfur atoms per mol of protein. Its midpoint potential at pH 7.5, as determined by electron paramagnetic resonance titration, is -300 mV. Optical circular dichroism and electron paramagnetic resonance spectra of the paramagnetic protein are similar to those of two iron-two acid-labile sulfur ferredoxins. The biochemical reduction of the purified protein was also studied. 相似文献
10.
A Parmeggiani J H Luft D S Love E G Krebs 《The Journal of biological chemistry》1966,241(20):4625-4637
11.
An antibody to Clostridium pasteurianum rubredoxin was found in goat serum after multiple injections of the protein. This antibody was purified by adsorption and elution from a Sepharose-rubredoxin column. The purified antibody formed a precipitating complex with C. pasteurianum rubredoxin and aporubredoxin, but not with the rubredoxin from Micrococcus aerogenes, Peptostreptococcus elsdenii, and Pseudomonas oleovorans. All rubredoxins tested were adsorbed to Sepharose-antirubredoxin columns indicating that each could form a soluble complex with anti-C. pasteurianum rubredoxin. The relative affinity of the antirubredoxin for the various rubredoxins was demonstrated by its ability to inhibit the rubredoxin-dependent reduction of cytochrome c by NADPH in the presence of NADP-ferredoxin oxidoreductase. These data suggest that there are two antigenic determinants in C. pasteurianum rubredoxin and only one such determinant in the rubredoxin from other organisms which are recognized by anti-C. pasteurianum rubredoxin. 相似文献
12.
13.
14.
15.
16.
Primary structure of hydrogenase I from Clostridium pasteurianum 总被引:3,自引:0,他引:3
Peptides obtained by cleavage of Clostridium pasteurianum hydrogenase I have been sequenced. The data allowed design of oligonucleotide probes which were used to clone a 2310-bp Sau3A fragment containing the hydrogenase encoding gene. The latter has been sequenced and was found to translate into a protein composed of 574 amino acids (Mr = 63,836), including 22 cysteines. C. pasteurianum hydrogenase is homologous to, but longer than, the large subunit of Desulfovibrio vulgaris (Hildenborough) [Fe] hydrogenase. It includes an additional N-terminal domain of ca. 110 amino acids which contains eight cysteine residues and which therefore could accommodate two of its postulated four [4Fe-4S] clusters. C. pasteurianum hydrogenase is most similar in length, cysteine positions, and sequence altogether to the translation product of a putative hydrogenase encoding gene from D. vulgaris (Hildenborough). Comparisons of the available [Fe] hydrogenase sequences show that these enzymes constitute a structurally rather homogeneous family. While they differ in the length of their N-termini and in the number of their [4Fe-4S] clusters, they are highly similar in their C-terminal halves, which are postulated to harbor the hydrogen-activating H cluster. Five conserved cysteine residues occurring in this domain are likely ligands of the H cluster. Possible ligation by other residues, and in particular by methionine, is discussed. The comparisons carried out here show that the H clusters most probably possess a common structural framework in all [Fe] hydrogenases. On the basis of the available data on these proteins and on the current developments in iron-sulfur chemistry, the H clusters possibly contain six to eight iron atoms.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
18.
Occurrence of nickel in carbon monoxide dehydrogenase from Clostridium pasteurianum and Clostridium thermoaceticum 总被引:4,自引:11,他引:4 下载免费PDF全文
H L Drake 《Journal of bacteriology》1982,149(2):561-566
The carbon monoxide (CO) dehydrogenase activity band from Clostridium pasteurianum was shown to contain nickel by in situ activity staining of polyacrylamide gels. However, the majority of the nickel in cell extracts was found to electrophorese independently of CO dehydrogenase. Comparative analysis with Clostridium thermoaceticum demonstrated that, although the majority of nickel was accounted for in CO dehydrogenase in anaerobic extracts, the metal dissociated from the enzyme when inactivated by oxidation. 相似文献
19.
Formate dehydrogenase was purified to electrophoretic homogeneity from N2-fixing cells of Clostridium pasteurianum W5. The purified enzyme has a minimal Mr of 117,000 with two nonidentical subunits with molecular weights of 76,000 and 34,000, respectively. It contains 2 mol of molybdenum, 24 mol of nonheme iron, and 28 mol of acid-labile sulfide per mol of enzyme; no other metal ions were detected. Analysis of its iron-sulfur centers by ligand exchange techniques showed that 20 iron atoms of formate dehydrogenase can be extruded as Fe4S4 centers. Fluorescence analysis of its isolated molybdenum centers suggests it is a molybdopterin. The clostridial formate dehydrogenase has a pH optimum between 8.3 and 8.5 and a temperature optimum of 52 degrees C. The Km for formate is 1.72 mM with a Vmax of 551 mumol of methyl viologen reduced per min per mg of protein. Sodium azide competes competitively with formate (K1 = 3.57 microM), whereas the inactivation by cyanide follows pseudo-first-order kinetics with K = 5 X 10(2) M-1 s-1. 相似文献
20.
The exosporium of Clostridium pasteurianum 总被引:2,自引:0,他引:2