首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The Arabidopsis MIM gene encodes a protein belonging to the SMC family (structure maintenance of chromosomes) which is required for intrachromosomal homologous recombination (ICR). Both ICR and MIM gene expression are enhanced by DNA-damaging treatments, suggesting that MIM is a factor limiting DNA repair by homologous recombination (HR) under genotoxic stress. We tested this hypothesis by measuring the levels of recombination in the mim mutant under genotoxic stress, using methyl methanesulfonate. Although the mutant clearly showed diminished basal and induced levels of ICR, enhancement of ICR by DNA-damaging treatments was similar to that observed in the wild type. This suggests that the MIM gene product is required for DNA repair by HR, but is not critical for HR induction. To determine whether enhanced availability of MIM would increase basal HR levels in Arabidopsis, we examined ICR frequencies in transgenic Arabidopsis strains overexpressing the MIM gene after ectopic insertion of additional MIM copies. Two independent lines showed a twofold increase in ICR frequency relative to the wild type. Thus MIM is required for efficient ICR in plants, and its manipulation can be used to change homologous recombination frequencies. Since MIM is one of the components responsible for chromatin dynamics, our results suggest that the chromatin environment determines the frequency of homologous recombination.  相似文献   

2.
The DNA damage response and DNA recombination are two interrelated mechanisms involved in maintaining the integrity of the genome, but in plants they are poorly understood. RecQ is a family of genes with conserved roles in the regulation of DNA recombination in eukaryotes; there are seven members in Arabidopsis. Here we report on the functional analysis of the Arabidopsis RecQl4A gene. Ectopic expression of Arabidopsis RecQl4A in yeast RecQ-deficient cells suppressed their hypersensitivity to the DNA-damaging drug methyl methanesulfonate (MMS) and enhanced their rate of homologous recombination (HR). Analysis of three recQl4A mutant alleles revealed no obvious developmental defects or telomere deregulation in plants grown under standard growth conditions. Compared with wild-type Arabidopsis, the recQl4A mutant seedlings were found to be hypersensitive to UV light and MMS, and more resistant to mitomycin C. The average frequency of intrachromosomal HR in recQl4A mutant plants was increased 7.5-fold over that observed in wild-type plants. The data reveal roles for Arabidopsis RecQl4A in maintenance of genome stability by modulation of the DNA damage response and suppression of HR.  相似文献   

3.
陈成  董爱武  苏伟 《植物学报》2018,53(1):42-50
HIRA是组蛋白H3.3的特异分子伴侣, 在组蛋白H3.3掺入染色质的过程中发挥重要作用。研究表明, HIRA在哺乳动物胚胎发育和DNA损伤修复过程中不可或缺。而目前人们对于植物中HIRA同源基因功能的研究相对较少。该研究主要关注拟南芥(Arabidopsis thaliana) AtHIRA基因在植物体细胞同源重组以及减数分裂同源重组过程中的功能。将体细胞同源重组和减数分裂同源重组报告系统分别导入野生型和hira-1突变体后统计同源重组频率, 结果表明在正常生长条件下及在伯莱霉素(bleomycin)或UV-C处理条件下, hira-1突变体体细胞的分子内和分子间同源重组频率均低于野生型。而在正常生长条件下, 野生型与hira-1突变体花粉母细胞间的减数分裂同源重组频率没有明显差异, hira-1突变体的DNA损伤水平与野生型接近。qRT-PCR结果表明, DNA损伤修复相关基因RAD51RAD54hira-1突变体中的表达水平均高于野生型。此外, 盐胁迫处理实验表明, hira-1突变体对于高盐胁迫更加敏感。综上, AtHIRA在拟南芥体细胞同源重组及盐胁迫响应过程中发挥了一定作用。  相似文献   

4.
The HO endonuclease promotes gene conversion between mating-type alleles in yeast by a DNA double-strand break at the site of conversion (the MAT-Y/Z site). As a first step toward understanding the molecular basis of homologous recombination in higher plants, we demonstrate that expression of HO in Arabidopsis enhances intrachromosomal recombination between inverted repeats of two defective beta-glucuronidase (gus) genes (GUS- test construct). One of these genes has the Y/Z site. The two genes share 2.5 kb of DNA sequence homology around the HO cut site. Somatic recombination between the two repeats was determined by using a histochemical assay of GUS activity. The frequency of Gus+ sectors in leaves of F1 plants from a cross between parents homozygous for the GUS- test construct and HO, respectively, was 10-fold higher than in F1 plants from a cross between the same plant containing the GUS- test construct and a wild-type parent. Polymerase chain reaction analysis showed restoration of the 5' end of the GUS gene in recombinant sectors. The induction of intrachromosomal gene conversion in Arabidopsis by HO reveals the general utility of site-specific DNA endonucleases in producing targeted homologous recombination in plant genomes.  相似文献   

5.
Kirik A  Pecinka A  Wendeler E  Reiss B 《The Plant cell》2006,18(10):2431-2442
DNA replication in cycling eukaryotic cells necessitates the reestablishment of chromatin after nucleosome redistribution from the parental to the two daughter DNA strands. Chromatin assembly factor 1 (CAF-1), a heterotrimeric complex consisting of three subunits (p150/p60/p48), is one of the replication-coupled assembly factors involved in the reconstitution of S-phase chromatin. CAF-1 is required in vitro for nucleosome assembly onto newly replicated chromatin in human cells and Arabidopsis thaliana, and defects in yeast (Saccharomyces cerevisiae) affect DNA damage repair processes, predominantly those involved in genome stability. However, in vivo chromatin defects of caf-1 mutants in higher eukaryotes are poorly characterized. Here, we show that fasciata1-4 (fas1-4), a new allele of the Arabidopsis fas1 mutant defective in the p150 subunit of CAF-1, has a severe developmental phenotype, reduced heterochromatin content, and a more open conformation of euchromatin. Most importantly, homologous recombination (HR), a process involved in maintaining genome stability, is increased dramatically in fas1-4, as indicated by a 96-fold stimulation of intrachromosomal HR. Together with the open conformation of chromatin and the nearly normal expression levels of HR genes in the mutant, this result suggests that chromatin is a major factor restricting HR in plants.  相似文献   

6.
Intermolecular recombination events were monitored in Arabidopsis thaliana lines using specially designed recombination traps consisting of tandem disrupted beta-glucuronidase or luciferase reporter genes in direct repeat orientation. Recombination frequencies (RFs) varied between the different lines, indicating possible position effects influencing intermolecular recombination processes. The RFs between sister chromatids and between homologous chromosomes were measured in plants either hemizygous or homozygous for a transgene locus. The RFs in homozygous plants exceeded those of hemizygous plants by a factor of >2, implying that in somatic plant cells both sister chromatid recombination and recombination between homologous chromosomes exist for recombinational DNA repair. In addition, different DNA-damaging agents stimulated recombination in homozygous and hemizygous plants to different extents in a manner dependent on the type of DNA damage and on the genomic region. The genetic and molecular analysis of recombination events showed that most of the somatic recombination events result from gene conversion, although a pop-out event has also been characterized.  相似文献   

7.
We describe a transgenic plant-based assay to study the genetic effects of heavy metals. Arabidopsis thaliana plants carrying a beta-glucuronidase (GUS) marker gene either with a point mutation or as a recombination substrate were used to analyze the frequency of somatic point mutations and homologous recombination in whole plants. Transgenic test plants sown on media contaminated by the salts of the heavy metals Cd2+, Pb2+, Ni2+, Zn2+, Cu2+, and As2O3 exhibited a pronounced uptake-dependent increase in the frequencies of both somatic intrachromosomal recombination and point mutation. The test was applied to monitor the genotoxicity of soils sampled in sites contaminated with several heavy metals. Our results indicate that this is a highly sensitive system for monitoring metal contamination in soils and water.  相似文献   

8.
We have isolated a hyperrecombinogenic Nicotiana tabacum mutant. The mutation, Hyrec, is dominant and segregates in a Mendelian fashion. In the mutant, the level of mitotic recombination between homologous chromosomes is increased by more than three orders of magnitude. Recombination between extrachromosomal substrates is increased six- to ninefold, and intrachromosomal recombination is not affected. Hyrec plants were found to perform non-homologous end joining as efficiently as the wild type, ruling out the possibility that the increase in homologous recombination is due to a defect in end joining. In addition, Hyrec plants show significant resistance to gamma-irradiation, whereas UV resistance is not different from the wild type. This suggests that homologous recombination can be strongly up-regulated in plants. Moreover, Hyrec constitutes a novel type of mutation: no similar mutant was reported in plants and hyperrecombinogenic mutants from other organisms usually show sensitivity to DNA damaging agents. We discuss the insight that this mutant provides into understanding the mechanisms of recombination plus the potential application for gene targeting in plants.  相似文献   

9.
Members of the structural maintenance of chromosomes (SMC) family share a characteristic design and configuration of protein domains that provides the molecular basis for the various functions of this family in chromosome dynamics. SMC proteins have a role in chromosome condensation, sister-chromatid cohesion, DNA repair and recombination, and gene dosage compensation, and they function in somatic and meiotic cells. As more is learned about how their unique design affects their function, a picture of a dynamic and varied protein family is emerging.  相似文献   

10.
The eukaryotic recombinases RAD51 and DMC1 are essential for DNA strand-exchange between homologous chromosomes during meiosis. RAD51 is also expressed during mitosis, and mediates homologous recombination (HR) between sister chromatids. It has been suggested that DMC1 might be involved in the switch from intersister chromatid recombination in somatic cells to interhomolog meiotic recombination. At meiosis, the Arabidopsis Atrad51 null mutant fails to synapse and has extensive chromosome fragmentation. The Atdmc1 null mutant is also asynaptic, but in this case chromosome fragmentation is absent. Thus in plants, AtDMC1 appears to be indispensable for interhomolog homologous recombination, whereas AtRAD51 seems to be more involved in intersister recombination. In this work, we have studied a new AtRAD51 knock-down mutant, Atrad51-2, which expresses only a small quantity of RAD51 protein. Atrad51-2 mutant plants are sterile and hypersensitive to DNA double-strand break induction, but their vegetative development is apparently normal. The meiotic phenotype of the mutant consists of partial synapsis, an elevated frequency of univalents, a low incidence of chromosome fragmentation and multivalent chromosome associations. Surprisingly, non-homologous chromosomes are involved in 51% of bivalents. The depletion of AtDMC1 in the Atrad51-2 background results in the loss of bivalents and in an increase of chromosome fragmentation. Our results suggest that a critical level of AtRAD51 is required to ensure the fidelity of HR during interchromosomal exchanges. Assuming the existence of asymmetrical DNA strand invasion during the initial steps of recombination, we have developed a working model in which the initial step of strand invasion is mediated by AtDMC1, with AtRAD51 required to check the fidelity of this process.  相似文献   

11.
12.
Mutation of the MER2 gene of Saccharomyces cerevisiae confers meiotic lethality. To gain insight into the function of the Mer2 protein, we have carried out a detailed characterization of the mer2 null mutant. Genetic analysis indicates that mer2 completely eliminates meiotic interchromosomal gene conversion and crossing over. In addition, mer2 abolishes intrachromosomal meiotic recombination, both in the ribosomal DNA array and in an artificial duplication. The results of a physical assay demonstrate that the mer2 mutation prevents the formation of meiosis-specific, double-strand breaks, indicating that the Mer2 protein acts at or before the initiation of meiotic recombination. Electron microscopic analysis reveals that the mer2 mutant makes axial elements, which are precursors to the synaptonemal complex, but homologous chromosomes fail to synapse. Fluorescence in situ hybridization of chromosome-specific DNA probes to spread meiotic chromosomes demonstrates that homolog alignment is also significantly reduced in the mer2 mutant. Although the MER2 gene is transcribed during vegetative growth, deletion or overexpression of the MER2 gene has no apparent effect on mitotic recombination or DNA damage repair. We suggest that the primary defect in the mer2 mutant is in the initiation of meiotic genetic exchange.  相似文献   

13.
? Mutations in the breast cancer susceptibility gene 2 (BRCA2) are correlated with hereditary breast cancer in humans. Studies have revealed that mammalian BRCA2 plays crucial roles in DNA repair. Therefore, we wished to define the role of the BRCA2 homologs in Arabidopsis in detail. ? As Arabidopsis contains two functional BRCA2 homologs, an Atbrca2 double mutant was generated and analyzed with respect to hypersensitivity to genotoxic agents and recombination frequencies. Cytological studies addressing male and female meiosis were also conducted, and immunolocalization was performed in male meiotic prophase I. ? The Atbrca2 double mutant showed hypersensitivity to the cross-linking agent mitomycin C and displayed a dramatic reduction in somatic homologous recombination frequency, especially after double-strand break induction. The loss of AtBRCA2 also led to severe defects in male meiosis and development of the female gametophyte and impeded proper localization of the synaptonemal complex protein AtZYP1 and the recombinases AtRAD51 and AtDMC1. ? The results demonstrate that AtBRCA2 is important for both somatic and meiotic homologous recombination. We further show that AtBRCA2 is required for proper meiotic synapsis and mediates the recruitment of AtRAD51 and AtDMC1. Our results suggest that BRCA2 controls single-strand invasion steps during homologous recombination in plants.  相似文献   

14.
During meiosis, the homologous chromosomes pair and recombine. An evolutionarily conserved protein structure, the synaptonemal complex (SC), is located along the paired meiotic chromosomes. We have studied the function of a structural component in the axial/lateral element of the SC, the synaptonemal complex protein 3 (SCP3). A null mutation in the SCP3 gene was generated, and we noted that homozygous mutant males were sterile due to massive apoptotic cell death during meiotic prophase. The SCP3-deficient male mice failed to form axial/lateral elements and SCs, and the chromosomes in the mutant spermatocytes did not synapse. While the absence of SCP3 affected the nuclear distribution of DNA repair and recombination proteins (Rad51 and RPA), as well as synaptonemal complex protein 1 (SCP1), a residual chromatin organization remained in the mutant meiotic cells.  相似文献   

15.
16.
Replacement of endogenous genes by homologous recombination is rare in plants; the majority of genetic modifications are the result of transforming DNA molecules undergoing random genomic insertion by way of non-homologous recombination. Factors that affect chromatin remodeling and DNA repair are thought to have the potential to enhance the frequency of homologous recombination in plants. Conventional tools to study the frequencies of genetic recombination often rely on stable transformation-based approaches, with these systems being rarely capable of high-throughput or combinatorial analysis. We developed a series of vectors that use chemiluminescent (LUC and REN) reporter genes to assay the relative frequency of homologous and non-homologous recombination in plants. These transient assay vectors were used to screen 14 candidate genes for their effects on recombination frequencies in Nicotiana benthamiana plants. Over-expression of Arabidopsis genes with sequence similarity to SNM1 from yeast and XRCC3 from humans enhanced the frequency of non-homologous recombination when assayed using two different donor vectors. Transient N. benthamiana leaf systems were also used in an alternative assay for preliminary measurements of homologous recombination frequencies, which were found to be enhanced by over-expression of RAD52, MIM and RAD51 from yeast, as well as CHR24 from Arabidopsis. The findings for the assays described here are in line with previous studies that analyzed recombination frequencies using stable transformation. The assays we report have revealed functions in non-homologous recombination for the Arabidopsis SNM1 and XRCC3 genes, so the suppression of these genes' expression offers a potential means to enhance the gene targeting frequency in plants. Furthermore, our findings also indicate that plant gene targeting frequencies could be enhanced by over-expression of RAD52, MIM, CHR24, and RAD51 genes.  相似文献   

17.
The structural maintenance of chromosomes (SMC) family of proteins play key roles in the organization, packaging, and repair of chromosomes. Cohesin (Smc1+3) holds replicated sister chromatids together until mitosis, condensin (Smc2+4) acts in chromosome condensation, and Smc5+6 performs currently enigmatic roles in DNA repair and chromatin structure. The SMC heterodimers must associate with non-SMC subunits to perform their functions. Using both biochemical and genetic methods, we have isolated a novel subunit of the Smc5+6 complex, Nse3. Nse3 is an essential nuclear protein that is required for normal mitotic chromosome segregation and cellular resistance to a number of genotoxic agents. Epistasis with Rhp51 (Rad51) suggests that like Smc5+6, Nse3 functions in the homologous recombination based repair of DNA damage. We previously identified two non-SMC subunits of Smc5+6 called Nse1 and Nse2. Analysis of nse1-1, nse2-1, and nse3-1 mutants demonstrates that they are crucial for meiosis. The Nse1 mutant displays meiotic DNA segregation and homologous recombination defects. Spore viability is reduced by nse2-1 and nse3-1, without affecting interhomolog recombination. Finally, genetic interactions shared by the nse mutants suggest that the Smc5+6 complex is important for replication fork stability.  相似文献   

18.
Mitotic recombination in somatic cells involves crossover events between homologous autosomal chromosomes. This process can convert a cell with a heterozygous deficiency to one with a homozygous deficiency if a mutant allele is present on one of the two homologous autosomes. Thus mitotic recombination often represents the second mutational step in tumor suppressor gene inactivation. In this study we examined the frequency and spectrum of ionizing radiation (IR)-induced autosomal mutations affecting Aprt expression in a mouse kidney cell line null for the Mlh1 mismatch repair (MMR) gene. The mutant frequency results demonstrated high frequency induction of mutations by IR exposure and the spectral analysis revealed that most of this response was due to the induction of mitotic recombinational events. High frequency induction of mitotic recombination was not observed in a DNA repair-proficient cell line or in a cell line with an MMR-independent mutator phenotype. These results demonstrate that IR exposure can initiate a process leading to mitotic recombinational events and that MMR function suppresses these events from occurring.  相似文献   

19.
Induction of intrachromosomal homologous recombination in whole plants   总被引:7,自引:3,他引:4  
The influence of different factors on frequencies of intrachromosomal homologous recombination in whole Arabidopsis thaliana and tobacco plants was analyzed using a disrupted β-glucuronidase marker gene. Recombination frequencies were enhanced severalfold by DNA damaging agents like UV-light or MMS (methyl methanesulfonate). Applying 3-methoxybenzamide (3-MB), an inhibitor of poly(ADP)ribose polymerase (PARP), an enzyme that is postulated to be involved in DNA repair, enhanced homologous recombination frequencies strongly. These findings indicate that homologous recombination is involved in DNA repair and can (at least partially) compensate for other DNA repair pathways. Indications that recombination in plants can be induced by environmental stress factors that are not likely to be involved in DNA metabolism were also found; Arabidopsis plants growing in a medium containing 0.1 M NaCl exhibited elevated recombination frequencies. The possible general effects of ‘environmental’ challenges on genome flexibility are discussed.  相似文献   

20.
In the present study, we report the first characterization of gene conversion tract length, continuity and fidelity for pathways of gene targeting, ectopic and intrachromosomal homologous recombination using the same locus and mammalian somatic cell type. In this isogenic cell system, the vast majority of recombinants (> 97%) are generated by homologous recombination and display a high degree of fidelity in the gene conversion process. Individual gene conversion tracts are highly likely to involve single, independent recombination events and proceed through a heteroduplex DNA intermediate. In all recombination pathways, gene conversion tracts are long, extending up to ∼ 2 kb. Most gene conversion tracts are continuous in favor of donor region sequences, but in a small fraction of recombinants (15%), discontinuous gene conversion tracts are observed. In most cases, the recombination donor sequence is unaltered, although in two cases of intrachromosomal recombination, both recombination donor and recipient sequences bear gene conversion tracts. Overall, gene conversion events are similar, both qualitatively and quantitatively, for homologous recombination within and between mammalian chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号