首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given a text of length n, a pattern of length m and an integer k, we present an algorithm for finding all occurrences of the pattern in the text, each with at most k substitutions. The algorithm runs in O(k(m log m + n)) time, and requires O(nk) space. This algorithm has direct implications for nucleotide and amino acid sequence comparisons.  相似文献   

2.
ABSTRACT: BACKGROUND: Ongoing improvements in throughput of the next-generation sequencing technologies challenge the current generation of de novo sequence assemblers. Most recent sequence assemblers are based on the construction of a de Bruijn graph. An alternative framework of growing interest is the assembly string graph, not necessitating a division of the reads into k-mers, but requiring fast algorithms for the computation of suffix-prefix matches among all pairs of reads. RESULTS: Here we present efficient methods for the construction of a string graph from a set of sequencing reads. Our approach employs suffix sorting and scanning methods to compute suffix-prefix matches. Transitive edges are recognized and eliminated early in the process and the graph is efficiently constructed including irreducible edges only. CONCLUSIONS: Our suffix-prefix match determination and string graph construction algorithms have been implemented in the software package Readjoiner. Comparison with existing string graph-based assemblers shows that Readjoiner is faster and more space efficient. Readjoiner is available at http://www.zbh.uni-hamburg.de/readjoiner.  相似文献   

3.
There are a few algorithms designed to solve the problem of the optimal alignment of one sequence, the pattern, of length m, with another, longer sequence the text, of length n. These algorithms allow mismatches, deletions and insertions. Algorithms to date run in O(mn) time. Let us define an integer, k, which is the maximal number of differences allowed. We present a simple algorithm showing that sequences can be optimally aligned in O(k2n) time. For long sequences the gain factor over the currently used algorithms is very large.  相似文献   

4.
We present here a fast and sensitive method designed to isolate short nucleotide sequences which have non-random statistical properties and may thus be biologically active. It is based on a first order Markov analysis and allows us to detect statistically significant sequence motifs from six to ten nucleotides long which are significantly shared (or avoided) in the sequences under investigation. This method has been tested on a set of 521 sequences extracted from the Eukaryotic Promoter Database (2). Our results demonstrate the accuracy and the efficiency of the method in that the sequence motifs which are known to act as eukaryotic promoters, such as the TATA-box and the CAAT-box, were clearly identified. In addition we have found other statistically significant motifs, the biological roles of which are yet to be clarified.  相似文献   

5.
RNA molecules, which are found in all living cells, fold into characteristic structures that account for their diverse functional activities. Many of these RNA structures consist of a collection of fundamental RNA motifs. The various combinations of RNA basic components form different RNA classes and define their unique structural and functional properties. The availability of many genome sequences makes it possible to search computationally for functional RNAs. Biological experiments indicate that functional RNAs have characteristic RNA structural motifs represented by specific combinations of base pairings and conserved nucleotides in the loop regions. The searching for those well-ordered RNA structures and their homologues in genomic sequences is very helpful for the understanding of RNA-based gene regulation. In this paper, we consider the following problem: given an RNA sequence with a known secondary structure, efficiently determine candidate segments in genomic sequences that can potentially form RNA secondary structures similar to the given RNA secondary structure. Our new bottom-up approach searches all potential stem-loops similar to ones of the given RNA secondary structure first, and then based on located stem-loops, detects potential homologous structural RNAs in genomic sequences.  相似文献   

6.
We propose a new algorithm for identifying cis-regulatory modules in genomic sequences. The proposed algorithm, named RISO, uses a new data structure, called box-link, to store the information about conserved regions that occur in a well-ordered and regularly spaced manner in the data set sequences. This type of conserved regions, called structured motifs, is extremely relevant in the research of gene regulatory mechanisms since it can effectively represent promoter models. The complexity analysis shows a time and space gain over the best known exact algorithms that is exponential in the spacings between binding sites. A full implementation of the algorithm was developed and made available online. Experimental results show that the algorithm is much faster than existing ones, sometimes by more than four orders of magnitude. The application of the method to biological data sets shows its ability to extract relevant consensi.  相似文献   

7.
This review of sequence database searching aims to set out current practice in the area, in order to give practical guidelines to the experimental biologist. It describes the basic principles behind the programs and enumerates the range of databases available in the public domain. Of these, the most important are the equivalent DNA databases European Molecular Biology Laboratory (EMBL), GenBank and DNA Databank of Japan (DDBJ), and the protein databases Swiss-Prot and TrEMBL. The commonly used BLAST and FASTA algorithms are described in detail and alternative approaches mentioned briefly. Scoring matrices used to compare amino acid types during protein database searches are compared, with an emphasis on the PAM and BLOSUM series of observed substitution matrices.  相似文献   

8.
A web server for searching latent periodicity based on the method of modified profile analysis has been developed. This method allows searching latent periodicity in presence of insertions and deletions. During searching process, the periodicity classes are used which were found by us earlier for various groups of organisms. Period length belongs to the range 2-20 nt, not including the triplet periodicity. The results obtained are subjected to various filtration steps to ensure their statistical significance. Availability: The use of web server is free for non-commercial users. No registration is required. URL of the server is http://victoria.biengi.ac.ru/lepscan. Current software version is 1.06.  相似文献   

9.
An efficient code searching for sequence homology and DNA duplication   总被引:1,自引:0,他引:1  
This paper presents a very simple and efficient algorithm that searches for sequence homology and gene duplication. The code finds the best alignment of two, short or long, sequences without having to specify how many unmatched bases are allowed to be looped out. Following Needleman & Wunsch (1970), Sellers (1974), Sankoff (1972) and Smith, Waterman & Fitch (1981) gap constraints are incorporated into the program and may be employed. The availability of such a fast computer code enables detection of homologous genes which may fulfill a different function at present, but have arisen from a common gene-ancestor. The code is extremely fast and runs in O(n3/2) units of time. It was applied to the phi X174 sequence.  相似文献   

10.
Here, we propose BpMatch: an algorithm that, working on a suitably modified suffix-tree data structure, is able to compute, in a fast and efficient way, the coverage of a source sequence S on a target sequence T, by taking into account direct and reverse segments, eventually overlapped. Using BpMatch, the operator should define a priori, the minimum length l of a segment and the minimum number of occurrences minRep, so that only segments longer than l and having a number of occurrences greater than minRep are considered to be significant. BpMatch outputs the significant segments found and the computed segment-based distance. On the worst case, assuming the alphabet dimension d is a constant, the time required by BpMatch to calculate the coverage is O(l2n). On the average, by setting l ≥ 2 log(d)(n), the time required to calculate the coverage is only O(n). BpMatch, thanks to the minRep parameter, can also be used to perform a self-covering: to cover a sequence using segments coming from itself, by avoiding the trivial solution of having a single segment coincident with the whole sequence. The result of the self-covering approach is a spectral representation of the repeats contained in the sequence. BpMatch is freely available on: www.sourceforge.net/projects/bpmatch.  相似文献   

11.
12.
Hong Y  Kang J  Lee D  van Rossum DB 《PloS one》2010,5(10):e13596
A major computational challenge in the genomic era is annotating structure/function to the vast quantities of sequence information that is now available. This problem is illustrated by the fact that most proteins lack comprehensive annotations, even when experimental evidence exists. We previously theorized that embedded-alignment profiles (simply "alignment profiles" hereafter) provide a quantitative method that is capable of relating the structural and functional properties of proteins, as well as their evolutionary relationships. A key feature of alignment profiles lies in the interoperability of data format (e.g., alignment information, physio-chemical information, genomic information, etc.). Indeed, we have demonstrated that the Position Specific Scoring Matrices (PSSMs) are an informative M-dimension that is scored by quantitatively measuring the embedded or unmodified sequence alignments. Moreover, the information obtained from these alignments is informative, and remains so even in the "twilight zone" of sequence similarity (<25% identity). Although our previous embedding strategy was powerful, it suffered from contaminating alignments (embedded AND unmodified) and high computational costs. Herein, we describe the logic and algorithmic process for a heuristic embedding strategy named "Adaptive GDDA-BLAST." Adaptive GDDA-BLAST is, on average, up to 19 times faster than, but has similar sensitivity to our previous method. Further, data are provided to demonstrate the benefits of embedded-alignment measurements in terms of detecting structural homology in highly divergent protein sequences and isolating secondary structural elements of transmembrane and ankyrin-repeat domains. Together, these advances allow further exploration of the embedded alignment data space within sufficiently large data sets to eventually induce relevant statistical inferences. We show that sequence embedding could serve as one of the vehicles for measurement of low-identity alignments and for incorporation thereof into high-performance PSSM-based alignment profiles.  相似文献   

13.
14.
15.
MOTIVATION: One of the major features of genomic DNA sequences, distinguishing them from texts in most spoken or artificial languages, is their high repetitiveness. Variation in the repetitiveness of genomic texts reflects the presence and density of different biologically important messages. Thus, deviation from an expected number of repeats in both directions indicates a possible presence of a biological signal. Linguistic complexity corresponds to repetitiveness of a genomic text, and potential regulatory sites may be discovered through construction of typical patterns of complexity distribution. RESULTS: We developed software for fast calculation of linguistic sequence complexity of DNA sequences. Our program utilizes suffix trees to compute the number of subwords present in genomic sequences, thereby allowing calculation of linguistic complexity in time linear in genome size. The measure of linguistic complexity was applied to the complete genome of Haemophilus influenzae. Maps of complexity along the entire genome were obtained using sliding windows of 40, 100, and 2000 nucleotides. This approach provided an efficient way to detect simple sequence repeats in this genome. In addition, local profiles of complexity distribution around the starts of translation were constructed for 21 complete prokaryotic genomes. We hypothesize that complexity profiles correspond to evolutionary relationships between organisms. We found principal differences in profiles of the GC-rich and other (non-GC-rich) genomes. We also found characteristic differences in profiles of AT genomes, which probably reflect individual species variations in translational regulation. AVAILABILITY: The program is available upon request from Alexander Bolshoy or at http://csweb.haifa.ac.il/library/#complex.  相似文献   

16.
模式发现是生物信息学的一个重要研究方向,但目前的大部分算法还不能保证获得最优的模式.文章推导了针对三个序列片段相似性关系的判据,将其作为剪枝规则,提出并实现了一种深度优先的穷举搜索算法——判据搜索算法(criterion search algorithm,CRISA),理论分析表明,对绝大多数模式发现问题,CRISA具有多项式的计算时间复杂度和线性的空间复杂度。对仿真的和实际的生物序列数据的测试也表明,CRISA能够快速而完全地识别出序列中所有的模式,具有优于其它算法的总体评价,能够应用于实际的模式发现问题。  相似文献   

17.
Fragment assembly is one of the most important problems of sequence assembly. Algorithms for DNA fragment assembly using de Bruijn graph have been widely used. These algorithms require a large amount of memory and running time to build the de Bruijn graph. Another drawback of the conventional de Bruijn approach is the loss of information. To overcome these shortcomings, this paper proposes a parallel strategy to construct de Bruijin graph. Its main characteristic is to avoid the division of de Bruijin graph. A novel fragment assembly algorithm based on our parallel strategy is implemented in the MapReduce framework. The experimental results show that the parallel strategy can effectively improve the computational efficiency and remove the memory limitations of the assembly algorithm based on Euler superpath. This paper provides a useful attempt to the assembly of large-scale genome sequence using Cloud Computing.  相似文献   

18.

Background  

Understanding gene regulatory networks has become one of the central research problems in bioinformatics. More than thirty algorithms have been proposed to identify DNA regulatory sites during the past thirty years. However, the prediction accuracy of these algorithms is still quite low. Ensemble algorithms have emerged as an effective strategy in bioinformatics for improving the prediction accuracy by exploiting the synergetic prediction capability of multiple algorithms.  相似文献   

19.
A greedy algorithm for aligning DNA sequences.   总被引:39,自引:0,他引:39  
For aligning DNA sequences that differ only by sequencing errors, or by equivalent errors from other sources, a greedy algorithm can be much faster than traditional dynamic programming approaches and yet produce an alignment that is guaranteed to be theoretically optimal. We introduce a new greedy alignment algorithm with particularly good performance and show that it computes the same alignment as does a certain dynamic programming algorithm, while executing over 10 times faster on appropriate data. An implementation of this algorithm is currently used in a program that assembles the UniGene database at the National Center for Biotechnology Information.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号