首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combination of microfluidic protein patterning and quantitative microfluidic handling has been used to analyze the binding kinetics of protein-ligand interactions on the nanoliter scale. The microfluidic handling method employing hydrophobic valving and pneumatic control allowed us to control nanoliter volumes of ligand or protein on a microfluidic chip. A hydrophobic and inert fluorocarbon thin film was patterned on a silicon nitride substrate to prevent non-specific binding on the background. Selectively patterned protein patterns of various sizes were used for quantitative analysis of the kinetic parameters of immobilized proteins on the circular patterns. As a model system, a streptavidin-patterned array of the same-sized pattern, i.e. 150 microm diameter, was used to capture FITC-BSA-biotin present in solution. The fluorescence intensity was well matched with the Langmuir isotherm model results, showing a dissociation constant of 2.43x10(-8)M. Similar streptavidin arrays with different-sized spots, ranging from 50 to 200 microm, showed a consistent dissociation constant of FITC-BSA-biotin with streptavidin pattern. Therefore, the reduction of pattern size of an immobilized protein did not change the dissociation rate of the ligand.  相似文献   

2.
A method for protein and cell patterning on polyelectrolyte-coated surfaces using simple micromolding in capillaries (MIMIC) is described. MIMIC produced two distinctive regions. One contained polyethylene glycol (PEG) microstructures fabricated using photopolymerization that provided physical, chemical, and biological barriers to the nonspecific binding of proteins, bacteria, and fibroblast cells. The second region was the polyelectrolyte (PEL) coated surface that promoted protein and cell immobilization.

The difference in surface functionality between the PEL region and background PEG microstructures resulted in simple patterning of biomolecules. Fluorescein isothiocyanate-tagged bovine serum albumin, E. coli expressing green fluorescence protein (GFP), and fibroblast cells were successfully bound to the exposed PEL surfaces at micron scale. Compared with the simple adsorption of protein, fluorescence intensity was dramatically improved (by about six-fold) on the PEL-modified surfaces. Although animal cell patterning is prerequisite for adhesive protein layer to survive on desired area, the PEL surface without adhesive proteins provides affordable microenvironment for cells.

The simple preparation of functionalized surface but universal platform can be applied to various biomolecules such as proteins, bacteria, and cells.  相似文献   


3.
A novel technique for patterning based on visible light at Au-TiO2 and Ag-TiO2 nanocomposite film surfaces has been developed for the first time. TiO2 films loaded with Au and Ag nanoparticles were modified with hydrophobic thiols to obtain hydrophobic surfaces. The surfaces were converted to hydrophilic by visible light irradiation. Hydrophobic/hydrophilic patterning was also possible by visible light irradiation through a photomask. The patterning was due to removal of the thiol based on plasmon photoelectrochemistry. Visible-light-induced plasmon resonance at the Au and Ag nanoparticles gives rise to charge separation and redox reactions. The thiol is removed from the Au-TiO2 film probably by oxidative desorption, and from the Ag-TiO2 film owing chiefly to oxidation of Ag nanoparticles to Ag+.  相似文献   

4.
Application of polymer-embedded proteins to fabrication of DNA array   总被引:1,自引:0,他引:1  
A plasma-polymerized film (PPF) of hexamethyldisiloxane [HMDS; (CH(3))(3)SiOSi(CH(3))(3)] was used to immobilize streptavidin on a glass substrate. Another layer of HMDS-PPF was also applied to the protein, which was first adsorbed to an underlayer of the same kind of film. As the result, the streptavidin was "embedded" between the two layers of HMDS, whereby biotinylated molecules could be efficiently captured. The second layer of approximately 30 to 45 A PPF was sufficient to allow the binding of biotinylated molecules, whereas thicknesses of >90 A significantly hindered the streptavidin-biotin interactions. Fluorescence analysis revealed that the absence of an HMDS plasma-polymer (HMDS-PP) layer on either side of the streptavidin film resulted in a decrease in biotin binding. This immobilization technique was used to bind biotinylated oligonucleotides in sequence-specific DNA-DNA interactions. The hydrophobic properties of the plasma-polymerized HMDS thin film acted to minimize nonspecific DNA binding to the glass substrate. A DNA array was fabricated using this procedure and showed greatly decreased nonspecific DNA binding compared with a poly-L-lysine coated substrate.  相似文献   

5.
In this study, we have described a method for the fabrication of a protein chip on silicon substrate using hydrophobic thin film and microfluidic channels, for the simultaneous detection of multiple targets in samples. The use of hydrophobic thin film provides for a physical, chemical, and biological barrier for protein patterning. The microfluidic channels create four protein patterned strips on the silicon surfaces with a high signal-to-noise ratio. The feasibility of the protein chips was determined in order to discriminate between each protein interaction in a mixture sample that included biotin, ovalbumin, hepatitis B antigen. In the fabrication of the multiplexed assay system, the utilization of the hydrophobic thin film and the microfluidic networks constitutes a more convenient method for the development of biosensors or biochips. This technique may be applicable to the simultaneous evaluation of multiple protein-protein interactions.  相似文献   

6.
With the help of a microfabrication process and surface modification technology, a method of fabricating protein patterned chips was developed which can be utilized as a powerful tool for performing bioassays in a high-throughput manner. A digital micromirror array (MMA) system was used as a virtual photomask, so that a maskless photolithography process was able to be used to build patterned biomolecules on a chip by selective illumination onto the chip surface. We utilized the nitroveratryloxycarbonyl (NVOC) group as a photolabile protecting group for protein patterning. The NVOC-protected surface was selectively irradiated by a UV illuminator using an MMA. After removing the NVOC group, biotin was coupled to the NVOC-cleaved site, onto which a buffered streptavidin solution was eluted. At this point, we could obtain a streptavidin-patterned surface and observe the effect of the polymer-grafted surface in reducing nonspecific binding.  相似文献   

7.
Two-dimensional mean-field lattice theory is used to model immobilization and stabilization of an enzyme on a hydrophobic surface using grafted polymers. Although the enzyme affords biofunctionality, the grafted polymers stabilize the enzyme and impart biocompatibility. The protein is modeled as a compact hydrophobic-polar polymer, designed to have a specific bulk conformation reproducing the catalytic cleft of natural enzymes. Three scenarios are modeled that have medical or industrial importance: 1), It is shown that short hydrophilic grafted polymers, such as polyethylene glycol, which are often used to provide biocompatibility, can also serve to protect a surface-immobilized enzyme from adsorption and denaturation on a hydrophobic surface. 2), Screening of the enzyme from the surface and nonspecific interactions with biomaterial in bulk solution requires a grafted layer composed of short hydrophilic polymers and long triblock copolymers. 3), Hydrophilic polymers grafted on a hydrophobic surface in contact with an organic solvent form a dense hydrophilic nanoenvironment near the surface that effectively shields and stabilizes the enzyme against both surface and solvent.  相似文献   

8.
The surface of the photosensitive Diazo-Naphto-quinone/novolak film was chemically manipulated through UV exposure and subsequent thermal processes to obtain different surface functionalities (DNQ, carboxylic, imidazole, indene, silylated and charged groups) and hydrophobicities. The neuronal cell attachment is sensitive to chemical functionalization, with favourable influence from charged, imidazole and carboxylic groups, while the hydrophobic/hydrophilic balance of the photoresist surface plays at best a secondary role. The microlithographic techniques assessed (standard positive tone, negative and positive tone image reversal, and surface imaging based on silylation) can be used to gain insight into the cell attachment mechanisms. The positive tone DNQ/novolak/imidazole system was found to be a suitable candidate for cell patterning.  相似文献   

9.
Tropoelastin is the precursor of the extracellular protein elastin and is utilized in tissue engineering and implant technology by adapting the interface presented by surface-bound tropoelastin. The preferred orientation of the surface bound protein is relevant to biointerface interactions, as the C-terminus of tropoelastin is known to be a binding target for cells. Using recombinant human tropoelastin we monitored the binding of tropoelastin on hydrophilic silica and on silica made hydrophobic by depositing a self-assembled monolayer of octadecyl trichlorosilane. The layered organization of deposited tropoelastin was probed using neutron and X-ray reflectometry under aqueous and dried conditions. In a wet environment, tropoelastin retained a solution-like structure when adsorbed on silica but adopted a brush-like structure when on hydrophobized silica. The orientation of the surface-bound tropoelastin was investigated using cell binding assays and it was found that the C-terminus of tropoelastin faced the bulk solvent when bound to the hydrophobic surface, but a mixture of orientations was adopted when tropoelastin was bound to the hydrophilic surface. Drying the tropoelastin-coated surfaces irreversibly altered these protein structures for both hydrophilic and hydrophobic surfaces.  相似文献   

10.
Adsorption characteristics of zein protein on hydrophobic and hydrophilic surfaces have been investigated to understand the orientation changes associated with the protein structure on a surface. The protein is adsorbed by a self-assembly procedure on a monolayer-modified gold surface. It is observed that zein shows higher affinity toward hydrophilic than hydrophobic surfaces on the basis of the initial adsorption rate followed by quartz crystal microbalance studies. Reflection absorption infrared (RAIR) spectroscopic studies reveal the orientation changes associated with the adsorbed zein films. Upon adsorption, the protein is found to be denatured and the transformation of alpha-helix to beta-sheet form is inferred. This transformation is pronounced when the protein is adsorbed on hydrophobic surfaces as compared to hydrophilic surfaces. Electrochemical techniques (cyclic voltammetry and impedance techniques) are very useful in assessing the permeability of zein film. It is observed that the zein moieties adsorbed on hydrophilic surfaces are highly impermeable in nature and act as a barrier for small molecules. The topographical features of the deposits before and after adsorption are analyzed by atomic force microscopy. The protein adsorbed on hydrophilic surface shows rod- and disclike features that are likely to be the base units for the growth of cylindrical structures of zein. The thermal stability of the adsorbed zein film has been followed by variable-temperature RAIR measurements.  相似文献   

11.
Preparation of biocompatible surfaces for immobilization of enzymes and whole cells is an important aspect of biotechnology due to their potential applications in biocatalysis, biosensing, and immunological applications. In this report, patterned thermally evaporated octadecylamine (ODA) films are used for the immobilization of Candida bombicola cells. The attachment of the cells to the ODA film surface occurs possibly through nonspecific interactions such as hydrophobic interactions between the cell walls and the ODA molecules. The enzyme cytochrome P450 present in the immobilized yeast cells on the ODA film surface was used for the transformation of the arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE). The assembly of cells on the hydrophobic ODA surface was confirmed by quartz crystal microgravimetry (QCM), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). SEM images confirmed the strong binding of the yeast cells to the ODA film surface after biocatalytic reactions. Moreover, the biocomposite films could be easily separated from the reaction medium and reused.  相似文献   

12.
The photoactive yellow protein (PYP) from the phototrophic bacterium Ectothiorhodospira halophila is a small, soluble protein that undergoes reversible photobleaching upon blue light irradiation and may function to mediate the negative phototactic response. Based on previous studies of the effects of solvent viscosity and of aliphatic alcohols on PYP photokinetics, we proposed that photobleaching is concomitant with a protein conformational change that exposes a hydrophobic region on the protein surface. In the present investigation, we have used surface plasmon resonance (SPR) spectroscopy to characterize the binding of PYP to lipid bilayers deposited on a thin silver film. SPR spectra demonstrate that the net negatively charged PYP molecule can bind in a saturable manner to electrically neutral, net positively, and net negatively charged bilayers. Illumination with either blue or white light of a PYP solution, which is in contact with the bilayer, at concentrations below saturation results in an increase in the extent of binding, consistent with exposure of a high affinity hydrophobic surface in the photobleached state, a property that may contribute to its biological function. A value for the thickness of the bound PYP layer (23 A), obtained from theoretical fits to the SPR spectra, is consistent with the structure of the protein determined by x-ray crystallography and indicates that the molecule binds with its long axis parallel to the membrane surface.  相似文献   

13.
The release of therapeutic drugs from the surface of implantable devices is instrumental for the reduction of medical costs and toxicity associated with systemic administration. In this study we demonstrate the triblock copolymer-mediated deposition and release of multiple therapeutics from a single thin film at the air-water interface via Langmuir–Blodgett deposition. The dual drug elution of dexamethasone (Dex) and doxorubicin hydrochloride (Dox) from the thin film is measured by response in the RAW 264.7 murine macrophage cell line. The integrated hydrophilic and hydrophobic components of the polymer structure allows for the creation of hybrids of the copolymer and the hydrophobic Dex and the hydrophilic Dox. Confirmation of drug release and functionality was demonstrated via suppression of the interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF α) inflammatory cytokines (Dex), as well as TUNEL staining and DNA fragmentation analysis (Dox). The inherent biocompatibility of the copolymeric material is further demonstrated by the lack of inflammation and apoptosis induction in cells grown on the copolymer films. Thus a layer-by-layer anchored deposition of an anti-inflammatory and chemotherapeutic functionalized copolymer film is able to localize drug dosage to the surface of a medical device, all with an innate material thickness of 4 nm per layer.  相似文献   

14.
The last years, there is a steadily growing demand for methods and materials appropriate to create patterns of biomolecules for bioanalytical applications. Here, a photolithographic method for patterning biomolecules onto a silicon surface coated with a polymeric layer of high protein binding capacity is presented. The patterning process does not affect the polymeric film and the activity of the immobilized onto the surface biomolecules. Therefore, it permits sequential immobilization of different biomolecules on spatially distinct areas on the same solid support. The polymeric layer is based on a commercially available photoresist (AZ5214) that is cured at high temperature in order to provide a stable substrate for creation of protein microarrays by the developed photolithographic process. The photolithographic material consists of a (meth)acrylate copolymer and a sulfonium salt as a photoacid generator, and it is lithographically processed by thermal treatment at temperatures 相似文献   

15.
Time-dependent adsorption behavior of poly(3-hydroxybutyrate) (PHB) depolymerase from Ralstonia pickettiiT1 on a polyester surface was studied by complementary techniques of quarts crystal microbalance (QCM) and atomic force microscopy (AFM). Amorphous poly(l-lactide) (PLLA) thin films were used as adsorption substrates. Effects of enzyme concentration on adsorption onto the PLLA surface were determined time-dependently by QCM. Adsorption of PHB depolymerase took place immediately after replacement of the buffer solutions with the enzyme solutions in the cell, followed by a gradual increase in the amount over 30 min. The amount of PHB depolymerase molecules adsorbed on the surface of amorphous PLLA thin films increased with an increase in the enzyme concentration. Time-dependent AFM observation of enzyme molecules was performed during the adsorption of PHB depolymerase. The phase response of the AFM signal revealed that the nature of the PLLA surface around the PHB depolymerase molecule was changed due to the adsorption function of the enzyme and that PHB depolymerase adsorbed onto the PLLA surface as a monolayer at a lower enzyme concentration. The number of PHB depolymerase molecules on the PLLA surface depended on the enzyme concentration and adsorption time. In addition, the height of the adsorbed enzyme was found to increase with time when the PLLA surface was crowded with the enzymes. In the case of higher enzyme concentrations, multilayered PHB depolymerases were observed on the PLLA thin film. These QCM and AFM results indicate that two-step adsorption of PHB depolymerase occurs on the amorphous PLLA thin film. First, adsorption of PHB depolymerase molecules takes place through the characteristic interaction between the binding domain of PHB depolymerase and the free surface of an amorphous PLLA thin film. As the adsorption proceeded, the surface region of the thin film was almost covered with the enzyme, which was accompanied by morphological changes. Second, the hydrophobic interactions among the enzymes in the adlayer and the solution become more dominant to stack as a second layer.  相似文献   

16.
This research compared the binding and release of recombinant human bone morphogenetic protein 2 (rhBMP-2) with a series of hydrophobic and hydrophilic poly-lactide-co-glycolide (PLGA) copolymers. Porous microspheres were produced via a double emulsion process. Binding and incorporation of protein were achieved by soaking microspheres in buffered protein solutions, filtering, and comparing protein concentration remaining to nonmicrosphere-containing samples. Protein release was determined by soaking bound microspheres in a physiological buffer and measuring protein concentration (by reversed-phase high-performance liquid chromatography) in solution over time. Normalized for specific surface area and paired by polymer molecular weight. microspheres made from hydrophilic 50∶50 or 75∶25 PLGA bound significantly more protein than microspheres made from the corresponding hydrophobic PLGA. Increased binding capacity correlated with higher polymer acid values. With certain polymers, rhBMP-2 adsorption was decreased or inhibited at high protein concentration, but protein loading could be enhanced by increasing the protein solution:PLGA (volume:mass) ratio or by repetitive soaking. Microspheres of various PLGAs released unbound protein in 3 days, whereas the subsequent bound protein release corresponded to mass loss. RhBMP-2 binding to PLGA was controlled by the acid value, protein concentration, and adsorption technique. The protein released in 2 phases: the first occurred over 3 days regardless of PLGA used and emanated from unbound, incorporated protein, while the second was controlled by mass loss and therefore was dependent on the polymer molecular weight. Overall, control of rhBMP-2 delivery is achievable by selection of PLGA microsphere carriers. Published: October, 7, 2001.  相似文献   

17.

The influence of saliva concentration, saliva total protein content and the wetting characteristics of exposed solids on in vitro film formation was studied by the technique of in situ ellipsometry. The rates and plateau values of adsorption (45 min) at solid/liquid interfaces (hydrophilic silica and hydrophobic methylated silica surfaces) were determinated for human parotid (HPS) and submandibular/sublingual (HSMSLS) resting saliva solutions (0.1 and 1.0%, (v/v), saliva in phosphate buffered saline). Adsorption rates were related to a model assuming mass transport through an unstirred layer adjacent to the surface. The results showed that the adsorption was rapid, concentration dependent and higher on hydrophobic than on hydrophilic surfaces. Analysis of the influence of protein concentration on the adsorbed amounts demonstrated an interaction between protein concentration and the two surfaces for HPS and HSMSLS, respectively. This may indicate differences in binding mode. Inter‐individual differences were found not to be significant at the 1% level of probability. Comparison of the observed adsorption and calculated diffusion rates suggest that on hydrophilic surfaces initial adsorption of proteins diffusing at rates corresponding to those of statherin and aPRPs takes place, whereas on hydrophobic surfaces lower molecular mass compounds appear to be involved.  相似文献   

18.
Fan H  Wang X  Zhu J  Robillard GT  Mark AE 《Proteins》2006,64(4):863-873
Hydrophobins are small ( approximately 100 aa) proteins that have an important role in the growth and development of mycelial fungi. They are surface active and, after secretion by the fungi, self-assemble into amphipathic membranes at hydrophobic/hydrophilic interfaces, reversing the hydrophobicity of the surface. In this study, molecular dynamics simulation techniques have been used to model the process by which a specific class I hydrophobin, SC3, binds to a range of hydrophobic/hydrophilic interfaces. The structure of SC3 used in this investigation was modeled based on the crystal structure of the class II hydrophobin HFBII using the assumption that the disulfide pairings of the eight conserved cysteine residues are maintained. The proposed model for SC3 in aqueous solution is compact and globular containing primarily beta-strand and coil structures. The behavior of this model of SC3 was investigated at an air/water, an oil/water, and a hydrophobic solid/water interface. It was found that SC3 preferentially binds to the interfaces via the loop region between the third and fourth cysteine residues and that binding is associated with an increase in alpha-helix formation in qualitative agreement with experiment. Based on a combination of the available experiment data and the current simulation studies, we propose a possible model for SC3 self-assembly on a hydrophobic solid/water interface.  相似文献   

19.
The structure and dynamics of the fatty acid binding cavity in I-FABP (rat intestinal fatty acid binding protein) were analyzed. In the crystal structure of apo I-FABP, the probe occupied cavity volume and surface are 539+/-8 A3 and 428 A2, respectively (1.4 A probe). A total of 31 residues contact the cavity with their side chains. The side-chain cavity surface is partitioned according to the residue type as follows: 36-39% hydrophobic, 21-25% hydrophilic, and 37-43% neutral or ambivalent. Thus, the cavity surface is neither like a typical protein interior core, nor is like a typical protein external surface. All hydrophilic residues that contact the cavity-with the exception of Asp74-are clustered on the one side of the cavity. The cavity appears to expand its hydrophobic surface upon fatty acid binding on the side opposite to this hydrophilic patch. In holo I-FABP the fatty acid chain interactions with the hydrophilic side chains are mediated by water molecules. Molecular dynamics (MD) simulation of fully solvated apo I-FABP showed global conformational changes of I-FABP, which resulted in a large, but seemingly transient, exposure of the cavity to the external solvent. The packing density of the side chains lining the cavity, studied by Voronoi volumes, showed the presence of two distinctive small hydrophobic cores. The MD simulation predicts significant structural perturbations of the cavity on the subnanosecond time scale, which are capable of facilitating exchange of I-FABP internal water.  相似文献   

20.
The phosphorescence emission of Cd-azurin from Pseudomonas aeruginosa was used as a probe of possible perturbations in the dynamical structure of the protein core that may be induced by protein-sorbent and protein-protein interactions occurring when the macromolecule is deposited into amorphous, thin solid films. Relative to the protein in aqueous solution, the spectrum is unrelaxed and the phosphorescence decay becomes highly heterogeneous, the average lifetime increasing sharply with film thickness and upon its dehydration. According to the lifetime parameter, adsorption of the protein to the substrate is found to produce a multiplicity of partially unfolded structures, an influence that propagates for several protein layers from the surface. Among the substrates used for film deposition, hydrophilic silica, dextran, DEAE-dextran, dextran sulfate, and hydrophobic octodecylamine, the perturbation is smallest with dextran sulfate and largest with octodecylamine. The destabilizing effect of protein-protein interactions, as monitored on 50-layer-thick films, is most evident at a relative humidity of 75%. Stabilizing agents were incorporated to attenuate the deleterious effects of protein aggregation. Among them, the most effective in preserving a more native-like structure are the disaccharides sucrose and trehalose in dry films and the polymer dextran in wet films. Interestingly, the polymer was found to achieve maximum efficacy at sensibly lower additive/protein ratios than the sugars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号