首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
von Hippel-Lindau (VHL) disease is caused by loss of function of the VHL tumor suppressor protein. Here, we demonstrate that the folding and assembly of VHL into a complex with its partner proteins, elongin B and elongin C (herein, elongin BC), is directly mediated by the chaperonin TRiC/CCT. Association of VHL with TRiC is required for formation of the VHL-elongin BC complex. A 55-amino acid domain of VHL is both necessary and sufficient for binding to TRiC. Importantly, mutation or deletion of this domain is associated with VHL disease. We identified two mutations that disrupt the normal interaction with TRiC and impair VHL folding. Our results define a novel role for TRiC in mediating oligomerization and suggest that inactivating mutations can impair polypeptide function by interfering with chaperone-mediated folding.  相似文献   

4.
5.
6.
7.
8.
The tumor suppressor von Hippel-Lindau (VHL) gene product forms a complex with elongin B and elongin C, and acts as a recognition subunit of a ubiquitin E3 ligase. Interactions between components in the complex were investigated in living cells by fluorescence resonance energy transfer (FRET)-fluorescence lifetime imaging microscopy (FLIM). Elongin B-cerulean or cerulean-elongin B was coexpressed with elongin C-citrine or citrine-elongin C in CHO-K1 cells. FRET signals were examined by measuring a change in the fluorescence lifetime of donors and by monitoring a corresponding fluorescence rise of acceptors. Clear FRET signals between elongin B and elongin C were observed in all combinations, except for the combination of elongin B-cerulean and citrine-elongin C. Although similar experiments to examine interaction between pVHL30 and elongin C linked to cerulean or citrine were performed, FRET signals were rarely observed among all the combinations. However, the signal was greatly increased by coexpression of elongin B. These results, together with results of coimmunoprecipitation experiment using pVHL, elongin C and elongin B, suggest that a conformational change of elongin C and/or pVHL was induced by binding of elongin B. The conformational change of elongin C was investigated by measuring changes in the intramolecular FRET signal of elongin C linked to cerulean and citrine at its N- and C-terminus, respectively. A strong FRET signal was observed in the absence of elongin B, and this signal was modestly increased by coexpression of elongin B, demonstrating that a conformation change of elongin C was induced by the binding of elongin B.  相似文献   

9.
The heterodimeric Elongin BC complex has been shown to interact in vitro and in mammalian cells with a conserved BC-box motif found in a growing number of proteins including RNA polymerase II elongation factor Elongin A, SOCS-box proteins, and the von Hippel-Lindau (VHL) tumor suppressor protein. Recently, the VHL-Elongin BC complex was found to interact with a module composed of Cullin family member Cul2 and RING-H2 finger protein Rbx1 to reconstitute a novel E3 ubiquitin ligase that activates ubiquitylation by the E2 ubiquitin-conjugating enzymes Ubc5 and Cdc34. In the context of the VHL ubiquitin ligase, Elongin BC functions as an adaptor that links the VHL protein to the Cul2/Rbx1 module, raising the possibility that the Elongin BC complex could function as an integral component of a larger family of E3 ubiquitin ligases by linking alternative BC-box proteins to Cullin/Rbx1 modules. In this report, we describe identification and purification from rat liver of a novel leucine-rich repeat-containing BC-box protein, MUF1, which we demonstrate is capable of assembling with a Cullin/Rbx1 module containing the Cullin family member Cul5 to reconstitute ubiquitin ligase activity. In addition, we show that the additional BC-box proteins Elongin A, SOCS1, and WSB1 are also capable of assembling with the Cul5/Rbx1 module to reconstitute potential ubiquitin ligases. Taken together, our findings identify MUF1 as a new member of the BC-box family of proteins, and they predict the existence of a larger family of Elongin BC-based E3 ubiquitin ligases.  相似文献   

10.
Inactivation of the von Hippel-Lindau (VHL) tumor suppressor is associated with renal carcinoma, hemangioblastoma and pheochromocytoma. The VHL protein is a component of a ubiquitin ligase complex that ubiquitinates and degrades hypoxia inducible factor-α (HIF-α). Degradation of HIF-α by VHL is proposed to suppress tumorigenesis and tumor angiogenesis. Several lines of evidence also suggest important roles for HIF-independent VHL functions in tumor suppression and other biological processes. Using GST-VHL pull-down experiment and mass spectrometry, we detected an interaction between VHL and heterochromatin protein 1 (HP1). We identified a conserved HP1-binding motif (PXVXL) in the β domain of VHL, which is disrupted in a renal carcinoma-associated P81S mutant. We show that the VHL P81S mutant displays reduced binding to HP1, yet retains the ability to interact with elongin B, elongin C, and cullin 2 and is fully capable of degrading HIF-α. We also demonstrate that HP1 increases the chromatin association of VHL. These results suggest a role for the VHL-HP1 interaction in VHL chromatin targeting.  相似文献   

11.
We examined the biogenesis of the von Hippel-Lindau (VHL) tumor suppressor protein (pVHL) in vitro and in vivo. pVHL formed a complex with the cytosolic chaperonin containing TCP-1 (CCT or TRiC) en route to assembly with elongin B/C and the subsequent formation of the VCB-Cul2 ubiquitin ligase. Blocking the interaction of pVHL with elongin B/C resulted in accumulation of pVHL within the CCT complex. pVHL present in purified VHL-CCT complexes, when added to rabbit reticulocyte lysate, proceeded to form VCB and VCB-Cul2. Thus, CCT likely functions, at least in part, by retaining VHL chains pending the availability of elongin B/C for final folding and/or assembly. Tumor-associated mutations within exon II of the VHL syndrome had diverse effects upon the stability and/or function of pVHL-containing complexes. First, a pVHL mutant lacking the entire region encoded by exon II did not bind to CCT and yet could still assemble into complexes with elongin B/C and elongin B/C-Cul2. Second, a number of tumor-derived missense mutations in exon II did not decrease CCT binding, and most had no detectable effect upon VCB-Cul2 assembly. Many exon II mutants, however, were found to be defective in the binding to and subsequent ubiquitination of hypoxia-inducible factor 1alpha (HIF-1alpha), a substrate of the VCB-Cul2 ubiquitin ligase. We conclude that the selection pressure to mutate VHL exon II during tumorigenesis does not relate to loss of CCT binding but may reflect quantitative or qualitative defects in HIF binding and/or in pVHL-dependent ubiquitin ligase activity.  相似文献   

12.
The von Hippel-Lindau (VHL) tumor suppressor gene encodes a component of a ubiquitin ligase complex containing elongin B, elongin C, cullin 2, and Rbx1, which acts as a negative regulator of hypoxia inducible factor (HIF). VHL ubiquitinates and degrades the alpha subunits of HIF, and this is proposed to suppress tumorigenesis and tumor angiogenesis. Several lines of evidence also suggest important roles for HIF-independent VHL functions in the maintenance of primary cilium, extracellular matrix formation, and tumor suppression. We undertook a series of proteomic analyses to gain a comprehensive picture of the VHL-interacting proteins. We found that the ARF tumor suppressor interacts with VHL30, a longer VHL isoform, but not with VHL19, a shorter VHL isoform. ARF was found to release VHL30 from the E3 ligase complex, promoting the binding of VHL30 to a protein arginine methyltransferase, PRMT3. Our analysis of the VHL19 interactome also uncovered that VHL19 displays an affinity to collagens and their biosynthesis enzymes.  相似文献   

13.
Elongin C (ELC) is an essential component of the mammalian CBC(VHL) E3 ubiquitin ligase complex. As a step toward understanding the role of ELC in assembly and function of CBC-type ubiquitin ligases, we analyzed the quaternary structure and backbone dynamics of the highly homologous Elc1 protein from Saccharomyces cerevisiae. Analytical ultracentrifugation experiments in conjunction with size exclusion chromatography showed that Elc1 is a nonglobular monomer over a wide range of concentrations. Pronounced line broadening in (1)H,(15)N-HSQC NMR spectra and failure to assign peaks corresponding to the carboxy-terminal helix 4 of Elc1 indicated that helix 4 is conformationally labile. Measurement of (15)N NMR relaxation parameters including T(1), T(2), and the (1)H-(15)N nuclear Overhauser effect revealed (i) surprisingly high flexibility of residues 69-77 in loop 5, and (ii) chemical exchange contributions for a large number of residues throughout the protein. Addition of 2,2,2-trifluoroethanol (TFE) stabilized helix 4 and reduced chemical exchange contributions, suggesting that stabilization of helix 4 suppresses the tendency of Elc1 to undergo conformational exchange on a micro- to millisecond time scale. Binding of a peptide representing the major ELC binding site of the von Hippel-Lindau (VHL) tumor suppressor protein almost completely eliminated chemical exchange processes, but induced substantial conformational changes in Elc1 leading to pronounced rotational anisotropy. These results suggest that elongin C interacts with various target proteins including the VHL protein by an induced fit mechanism involving the conformationally flexible carboxy-terminal helix 4.  相似文献   

14.
15.
16.
17.
Inactivating mutations of the von Hippel-Lindau (VHL) tumor suppressor gene cause the VHL cancer syndrome and sporadic renal clear cell carcinoma. VHL engages in a nucleocytoplasmic shuttle, which is required for its function. Here, we pursue our investigation to identify mechanisms by which VHL-green fluorescent protein (VHL-GFP) is exported from the nucleus. We show that nuclear export of VHL-GFP in living cells requires ongoing RNA polymerase II activity, and is mediated by mechanisms that are temperature-sensitive and energy-dependent. In vitro nuclear export of VHL-GFP is inhibited by nuclear pore-specific lectins, requires ATP hydrolysis and polyadenylated mRNAs, and occurs with kinetics that are similar to those of proteins containing a nuclear export signal. Biochemical fractionation has revealed that nuclear export of VHL-GFP occurs by way of a Ran-dependent pathway. Size exclusion column chromatography and deletion mutant analysis suggest that VHL-GFP does not require assembly with one of its associated proteins, cullin-2, to engage in nuclear export. These results demonstrate that nuclear export of VHL-GFP is Ran-mediated and ATP hydrolysis-dependent. They also suggest that sequences outside the elongin C binding box may function as a nuclear export domain, potentially providing a novel role for this region of VHL frequently mutated in renal cell carcinoma.  相似文献   

18.
The degree of cooperation and redundancy between different chaperones is an important problem in understanding how proteins fold in the cell. Here we use the yeast Saccharomyces cerevisiae as a model system to examine in vivo the chaperone requirements for assembly of the von Hippel-Lindau protein (VHL)-elongin BC (VBC) tumor suppressor complex. VHL and elongin BC expressed in yeast assembled into a correctly folded VBC complex that resembles the complex from mammalian cells. Unassembled VHL did not fold and remained associated with the cytosolic chaperones Hsp70 and TRiC/CCT, in agreement with results from mammalian cells. Analysis of the folding reaction in yeast strains carrying conditional chaperone mutants indicates that incorporation of VHL into VBC requires both functional TRiC and Hsp70. VBC assembly was defective in cells carrying either a temperature-sensitive ssa1 gene as their sole source of cytosolic Hsp70/SSA function or a temperature-sensitive mutation in CCT4, a subunit of the TRiC/CCT complex. Analysis of the VHL-chaperone interactions in these strains revealed that the cct4ts mutation decreased binding to TRiC but did not affect the interaction with Hsp70. In contrast, loss of Hsp70 function disrupted the interaction of VHL with both Hsp70 and TRiC. We conclude that, in vivo, folding of some polypeptides requires the cooperation of Hsp70 and TRiC and that Hsp70 acts to promote substrate binding to TRiC.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号