首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Both nitrogenase and the NifA gene, which controls the expressionof the nitrogenase enzyme, require microaerobic conditions inthe infected zone of a nodule. Such conditions depend on theability of the respiratory system to consume oxygen at approximatelythe maximum rate at which it can enter that region by diffusion.The balance between consumption and supply governs the minimumsize of a functional nodule. The nature of this balance is exploredin this paper using a model. It shows that it appears physicallyimpossible for legume root nodules, below a certain minimumsize, to fix nitrogen. Furthermore, experimental data are usedto suggest that the alternative oxidase respiratory systemsmay initially provide the large respiratory capacity requiredto create microaerobic conditions, suitable for the NifA geneand nitrogenase. Nitrogen fixation, NifA gene, diffusion resistance, oxygen  相似文献   

2.
Soybean (Gtycine max (L.) Merr. cv. Fiskeby V), white clover(Trifolium repens L. cv Blanca) and lucerne (Medicago sativaL.cv. Europe) nodules grown in fluid culture of Perlite wereexamined by cryo-scanning electron microscopy. The surfacesof all three species consisted of loosely packed cortical cells,collapsed areas covering intact cells and in soybean, troughswhich lacked the layers of loosely packed cells and were coveredby an amorphous matrix. The superficial cortical cells werehydrophobic and their surfaces were covered by a solvent-extractablestippling. This stippling was absent from the surfaces of underlyingcells. Air-filled intercellular spaces in fractured noduleswere seen throughout the cross-section. Nitrogen fixation, intercellular pathways, hydrophobicity, oxygen diffusion, cryo-SEM, soybean, Glycine max (L.) Merr. cv. Fiskeby V, clover, Trifolium repens L. cv. Blanca, lucerne, Medicago saliva L. cv. Europe.  相似文献   

3.
Nitrogenase-dependent acetylene reduction, nodule function, and nodule regrowth were studied during vegetative regrowth of harvested (detopped) alfalfa (Medicago sativa L.) seedlings grown in the glasshouse. Compared with controls, harvesting caused an 88% decline in acetylene reduction capacity of detached root systems within 24 hours. Acetylene reduction in harvested plants remained low for 13 days, then increased to a level comparable to the controls by day 18.  相似文献   

4.
In vivo CO2 fixation and in vitro phosphoenolpyruvate (PEP) carboxylase levels have been measured in lupin (Lupinus angustifolius L.) root nodules of various ages. Both activities were greater in nodule tissue than in either primary or secondary root tissue, and increased about 3-fold with the onset of N2 fixation. PEP carboxylase activity was predominantly located in the bacteroid-containing zone of mature nodules, but purified bacteroids contained no activity. Partially purified PEP carboxylases from nodules, roots, and leaves were identical in a number of kinetic parameters. Both in vivo CO2 fixation activity and in vitro PEP carboxylase activity were significantly correlated with nodule acetylene reduction activity during nodule development. The maximum rate of in vivo CO2 fixation in mature nodules was 7.9 nmol hour−1 mg fresh weight−1, similar to rates of N2 fixation and reported values for amino acid translocation.  相似文献   

5.
The effect of water stress on patterns of nitrate reductase activity in the leaves and nodules and on nitrogen fixation were investigated in Medicago sativa L. plants watered 1 week before drought with or without NO3. Nitrogen fixation was decreased by water stress and also inhibited strongly by the presence of NO3. During drought, leaf nitrate reductase activity (NRA) decreased significantly particularly in plants watered with NO3, while with rewatering, leaf NRA recovery was quite important especially in the NO3-watered plants. As water stress progressed, the nodular NRA increased both in plants watered with NO3 and in those without NO3 contrary to the behavior of the leaves. Beyond −15.105 pascal, nodular NRA began to decrease in plants watered with NO3. This phenomenon was not observed in nodules of plants given water only.  相似文献   

6.
观测了不同光强下生长的两种榕树幼苗叶片的光合能力、比叶重(LMA)、氮含量及在光合机构中的分配.结果表明,两种榕树幼苗的最大净光合速率(Pmax)均随生长光强的升高而升高,这与LMA、单位面积氮含量(NA)和光合氮利用效率随生长光强的升高而升高有关.除36%光强下外,相同光强下生长的喜光的斜叶榕(Ficus tinctoria)的Pmax均显著高于耐荫的假斜叶榕(Ficus subulata),这与其叶片中氮在羧化组份和生物力能学组份中的分配系数、LMA和NA较高有关.  相似文献   

7.
A mathematical model of oxygen diffusion in a legume root noduleis constructed and validated. The required properties, functionsand possible locations of the major resistance to oxygen diffusionare investigated and support is given to the concept of a partwater-filled diffusion pathway. The model predicts that in theabsence of leghaemoglobin an infected cell would have oxygendamaged nitrogenase in bacteroids close to an air space andanaerobic conditions around those towards its centre. Leghaemoglobinis essential for maintaining a fairly uniform level of nitrogenaseactivity within the infected cells, but it cannot prevent damageat high oxygen concentrations. Nevertheless, the nitrogenaseactivity of a nodule can increase with increasing oxygen concentrationeven though some enzyme damage occurs. In the absence of a variablediffusion resistance, the oxygen tolerance of nitrogenase isrelated to carbohydrate supply and in a normal atmosphere nitrogenfixation is limited by oxygen diffusion. Oxygen, diffusion, nitrogen fixation  相似文献   

8.
Lotus japonicus nodules are reviewed, and current research data on Nod-35 (uricase) gene, including that of Lotus japonicus as an example of a late nodulin gene are presented. Received 5 September 2000/ Accepted in revised form 2 October 2000  相似文献   

9.
A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod-), 51 mutants with totally ineffective nodules (Nod+ Fix-), 17 mutants with partially ineffective nodules (Nod+ Fix+/-), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/- Fix-), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/- Fix+), and 11 supernodulating mutants (Nod++Fix+/-). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN'T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod- lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging.  相似文献   

10.
野生大豆(Glycinesoja)酰脲含量与根瘤固氮活力的关系朱长甫,苗以农,刘学军,许守民(东北师范大学生命科学学院,长春130024)郑惠玉,徐豹(吉林省农业科学院大豆研究所,公主岭136100)关键词:野生大豆,固氮活力,酰脲,蛋白质根据固氮豆...  相似文献   

11.
Changes in nitrogenase activity (C2H2 reduction and H2 production),nodulated root respiration and the efficiency of nitrogenasefunctioning were measured in response to progressive dehydrationof nodules on intact well-watered plants of subterranean clover(Trifolium subterraneum L.) cv. Seaton Park. The nodulated rootsof vegetative plants grown to the 14-leaf stage were incubatedin a gas exchange system through which a continuous dry airstreamwas passed over an 8 d period. The root tips were immersed inan N-free nutrient solution during this time so that water andion uptake was unimpeded. The decline in nodulated root respirationresulting from nodule drying was associated with a continualreduction in respiration coupled to nitrogenase activity. Asnodule water potential (nod) decreased, the proportion of totalnodulated root respiration which was nitrogenase-linked declinedfrom 50% (day 1) to 33% (day 8). This was accompanied by a 79%reduction in specific nitrogenase activity (from 3.79 to 0.81umol C2H4 g–1 nodule dry weight min–1). Nodule dehydrationalso induced a decline in hydrogen (H2) production in air. Therelative decline in hydrogen production exceeded that of acetylenereduction activity and this resulted in an increase in the relativeefficiency of nitrogenase functioning. However, the carbon costof nitrogenase activity progressively increased above 2.0 molCO2 respired per mol C2H4 reduced as rood decreased below –0.4to –0.5 MPa. Consecutive measurements of the rates ofhydrogen evolution, 15N2 fixation and acetylene reduction activityon intact unstressed plants resulted in a C2H4/N2 conversionfactor of 4.08 and an electron balance of 1.08. These resultsindicated that the pre-decline rate of acetylene reduction activitymeasured in a flow-through system provided a valid measure ofthe total electron flux through nitrogenase. Key words: Subterranean clover, dehydration, efficiency, nitrogenase activity  相似文献   

12.
Nodule nitrogen fixation rates are regulated by a mechanism which is responsive to the rhizosphere oxygen concentration. In some legumes, this oxygen-sensitive mechanism appears to involve changes in the gas permeability of a diffusion barrier in the nodule cortex. In soybean evidence for such a mechanism has not been found. The purpose of this research was to make quantitative measurements of soybean nodule gas permeability to test the hypothesis that soybean nodule gas permeability is under physiological control and responsive to the rhizosphere oxygen concentration. Intact hydroponically grown soybean plants were exposed to altered rhizosphere oxygen concentrations, and the nodule gas permeability, acetylene reduction and nodule respiration rates were repeatedly assayed. After a change in the external oxygen concentration, nitrogenase activity and nodule respiration rates displayed a short-term transient response after which the values returned to rates similar to those observed under ambient oxygen conditions. In contrast to steady-state nitrogenase activity and nodule respiration, nodule gas permeability was dramatically affected by the change in oxygen concentration. Decreasing the external oxygen concentration to 0.1 cubic millimeter per cubic millimeter resulted in a mean increase in nodule gas permeability of 63%. Increasing the rhizosphere oxygen concentration resulted in decreased nodule gas permeability. These data are consistent with the hypothesis that soybean nodules are capable of regulating nitrogen fixation and nodule respiration rates in response to changes in the rhizosphere oxygen concentration and indicate that the regulatory mechanism involves physiological control of the nodule gas permeability.  相似文献   

13.
Molecular cloning is based on isolation of a DNA sequence of interest to obtain multiple copies of it in vitro. Application of this technique has become an increasingly important tool in clinical microbiology due to its simplicity, cost effectiveness, rapidity, and reliability. This review entails the recent advances in molecular cloning and its application in the clinical microbiology in the context of polymicrobial infections, recombinant antigens, recombinant vaccines, diagnostic probes, antimicrobial peptides, and recombinant cytokines. Culture-based methods in polymicrobial infection have many limitation, which has been overcome by cloning techniques and provide gold standard technique. Recombinant antigens produced by cloning technique are now being used for screening of HIV, HCV, HBV, CMV, Treponema pallidum, and other clinical infectious agents. Recombinant vaccines for hepatitis B, cholera, influenza A, and other diseases also use recombinant antigens which have replaced the use of live vaccines and thus reduce the risk for adverse effects. Gene probes developed by gene cloning have many applications including in early diagnosis of hereditary diseases, forensic investigations, and routine diagnosis. Industrial application of this technology produces new antibiotics in the form of antimicrobial peptides and recombinant cytokines that can be used as therapeutic agents.  相似文献   

14.
Wrinkled-seeded pea mutants (Pisum sativum L., genotypes rrrbrb-, rrRbRb-, and RRrbrb-) have seeds with reduced, but different, starch content and modified starch properties. Analysis of these mutants revealed an enhanced capacity of root nodules for symbiotic nitrogen fixation and of host plant organs for assimilation of ammonium nitrogen. This observation was confirmed by morphological data on organization of symbiotic system, by elevated nitrogenase activity, high protein accumulation in plants due to nitrogen fixation, and by enhanced activity of glutamine synthase in leaves and glutamate dehydrogenase in roots of mutants, as compared with the organs of wild-type pea. It is supposed that the aforementioned advantages of mutants are related to accumulation in seeds of elevated protein reserves that satisfy their demand for nitrogen during formation of symbiotic systems.  相似文献   

15.
The relationship between photosynthesis of soybean and nitrogen fixation of the nodules by symbiotic Rhizobium was studied. The contents of total nitrogen and chlorophyll, the net photosynthetic rate and seed yield of soybean were much higher in either hydroponically cultivated or field-grown plants inoculated with Rhizobium B16–11C (or Clark nodulating strain) than in control without inoculation (or Clark non-nodulating strain). These results show that the symbiotic nitrogen fixation has a beneficial effect on photosynthesis. However, the effect was indirect and slow so that there was no change in the net photosynthetic rate of the soybean leaves until three clays after removing nodules from the soybean roots. On the other hand, decreasing the photosynthate supply to nodule by shade, defoliation or shoot removal of the soybean, the nodule activity declined significantly. It seems that the supply of photosynthate to root nodule is a limiting factor for symbiotic nitrogen fixation. However, the diurnal variation of the nodule activity could not be explained by change neither in the contents of sucrose and starch of the root nodules nor in the ambient temperature. The factor controlling the diurnal variation deserves further study.  相似文献   

16.
Vance CP  Stade S 《Plant physiology》1984,75(1):261-264
A nonphotosynthetic phosphoenolpyruvate carboxylase (EC 4.1.1.31) was partially purified from the cytosol of root nodules of alfalfa. The enzyme was purified 86-fold by ammonium sulfate fractionation, DEAE-cellulose, hydroxylapatite chromatography, and reactive agarose with a final yield of 32%. The enzyme exhibited a pH optimum of 7.5 with apparent Km values for phosphoenolpyruvate and magnesium of 210 and 100 micromolar, respectively. Two isozymes were resolved by nondenaturing polyacrylamide disc gel electrophoresis. Subsequent electrophoresis of these isozymes in a second dimension by sodium dodecyl sulfate slab gel electrophoresis yielded identical protein patterns for the isozymes with one major protein band at molecular weight 97,000. Malate and AMP were slightly inhibitory (about 20%) to the partially purified enzyme. Phosphoenolpyruvate carboxylase comprised approximately 1 to 2% of the total soluble protein in actively N2-fixing alfalfa nodules.  相似文献   

17.
Feng  Y.-L.  Cao  K.-F.  Zhang  J.-L. 《Photosynthetica》2004,42(3):431-437
We investigated the effect of growth irradiance (I) on photon-saturated photosynthetic rate (P max), dark respiration rate (R D), carboxylation efficiency (CE), and leaf mass per unit area (LMA) in seedlings of the following four tropical tree species with contrasting shade-tolerance. Anthocephalus chinensis (Rubiaceae) and Linociera insignis (Oleaceae) are light-demanding, Barringtonia macrostachya (Lecythidaceae) and Calophyllum polyanthum (Clusiaceae) are shade-tolerant. Their seedlings were pot-planted under shading nets with 8, 25, and 50 % daylight for five months. With increase of I, all species displayed the trends of increases of LMA, photosynthetic saturation irradiance, and chlorophyll-based P max, and decreases of chlorophyll (Chl) content on both area and mass bases, and mass-based P max, R D, and CE. The area-based P max and CE increased with I for the light-demanders only. Three of the four species significantly increased Chl-based CE with I. This indicated the increase of nitrogen (N) allocation to carboxylation enzyme relative to Chl with I. Compared to the two shade-tolerants, under the same I, the two light-demanders had greater area- and Chl-based P max, photosynthetic saturation irradiance, lower Chl content per unit area, and greater plasticity in LMA and area- or Chl-based P max. Our results support the hypothesis that light-demanding species is more plastic in leaf morphology and physiology than shade-tolerant species, and acclimation to I of tropical seedlings is more associated with leaf morphological adjustment relative to physiology. Leaf nitrogen partitioning between photosynthetic enzymes and Chl also play a role in the acclimation to I.  相似文献   

18.
Resource Optimization and Symbiotic Nitrogen Fixation   总被引:6,自引:1,他引:5  
In temperate forests, symbiotic nitrogen (N) fixation is restricted to the early phases of succession despite the persistence of N limitation on production late in succession. This paradox has yet to be explained adequately. We hypothesized that the restriction of N fixation to early stages of succession results from the optimization of resource allocation in the vegetation. Because of this optimization, N fixation should be restricted to periods when fixation is less costly than N uptake. Our analysis differs from others in the way we calculate the cost of N uptake; we assess the cost of N uptake as the amount of carbon (C) that could be assimilated if the resources necessary to acquire one gram of N from the soil were allocated instead to photosynthesis. We then simulate N fixation as an asymptotic function of the difference in cost between N uptake and N fixation and proportional to the abundance of host tissues for the N-fixing symbionts. The factors that contribute to conditions that favor N fixation are (a) elevated-carbon dioxide (CO2) concentrations, (b) an open canopy, (c) low available N in the soil, and (d) a soil volume already well exploited by roots. Our results indicate that changes in the relative cost of uptake vs fixation can explain most of the pattern in fixation through both primary and secondary succession, but that competitive interactions with nonfixing species play a role in the final exclusion of fixation in later stages of succession. Received 26 September 2000; accepted 31 January 2001.  相似文献   

19.
Leghemoglobins (Lbs) play an important role in legumes-rhizobia symbiosis. Lbs bind O2 and protect nitrogenase activity from damage by O2 in nodules, therefore, they are regarded as a marker of active nitrogen fixation in nodules. Additionally, Lbs are involved in the nitric oxide (NO) signaling pathway, acting as a NO scavenger during nodule development and nitrogen fixation. However, regulators responsible for Lb expression and modulation of Lb activity have not been characterized. In our previous work, a Jasmonate-Zim-domain (JAZ) protein interacting with a Lb (AsB2510) in Astragalus sinicus was identified and designated AsJAZ1. In this study, the interaction between AsJAZ1 and AsB2510 was verified using a yeast two-hybrid system and in vitro Glutathione S-transferase (GST) pull-down assays, resulting in identification of the interaction domain as a TIFY (previously known as zinc-finger protein expressed in inflorescence meristem, ZIM) domain. TIFY domain is named after the most conserved amino acids within the domain. Bimolecular fluorescence complementation (BiFC) was used to confirm the interaction between AsJAZ1 and AsB2510 in tobacco cells, demonstrating that AsJAZ1-AsB2510 interaction was localized to the cell membrane and cytoplasm. Furthermore, the expression patterns and the symbiotic phenotypes of AsJAZ1 were investigated. Knockdown of AsJAZ1 expression via RNA interference led to decreased number of nodules, abnormal development of bacteroids, accumulation of poly-x-hydroxybutyrate (PHB) and loss of nitrogenase activity. Taken together, our results suggest that AsJAZ1 interacts with AsB2510 and participates in nodule development and nitrogen fixation. Our results provide novel insights into the functions of Lbs or JAZ proteins during legume-rhizobia symbiosis.  相似文献   

20.
Phaseolus vulgaris cv. Glamis plants grown at 7 and 28 W m–228 W m–2 in controlled environment cabinets showed copiousnodulation and high levels of acetylene reducing activity. Earlydifferences in nodulation were apparent before differences inphotosynthesis and were attributed to an effect of far-red lighton nodule development. Total plant nitrogen content was greater at 28 W m–2 thanat 7 W –2 but nitrogen content as a percentage of d. wtwas greater at the lower irradiance level. Total acetylene reducing activity (nmol. min–1 root–1)was greater at 28 W m–2 than at 7 W –2, but therewas no irradiance effect on specific activity (nmol. min–1g d. wt of pink nodules–1 or nmol. min–1 pink nodule–1). Transfer of 40-day-old plants from 7 W m–2 to 28 W m–2resulted in increased nodulesize(due toincreased size of infectedcells), accompanied by increased total, but not specific, acetylenereducing activity. Transfer of plants from 28 W m–2 to 7 W m–2 resultedin a fall of total acetylene reducing activity within 24 h,and senescence of large nodules. Specific acetylene reducingactivity was unaffected The results are interpreted as an effect of light on the productionof nitrogen fixing tissue, rather than on nitrogenase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号