首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse kidney contains urinastatin (UT)-like immunoreactive substances with trypsin inhibitory activity. Immunohistochemical studies show that these UT-like substances are localized in the same region as kidney kallikrein, i.e. in the distal tubules. Sephadex column chromatography of mouse kidney extract using 0.1M NaCl as the eluent yielded fractions (C.F.) containing both UT-like and kallikrein-like material. In these fractions (C.F.), the removal of UT-like material caused a concomitant decrease in kallikrein-like activity and vice versa. However, when the kidney extract was eluted with an acidic buffer of high ionic strength, the fractions containing both UT-like and kallikrein-like substances were not observed. These results suggest that these two components are intimately bound to one another. The kallikrein activity responded differently to pH, to metal ions (zinc and copper), and to the sodium/potassium ratio, depending on the concomitant presence or absence of UT-like material. These findings suggest that kallikrein activity in kidney tissue is modified by the presence of an UT-like substance.  相似文献   

2.
Effects of ischemia on the content of a ulinastatin (UT)-like substance in the murine cerebral cortex and hippocampus were studied. At 24 h post-ischemia, a significant (p < 0.05) decrease in the content of UT-like substance in the hippocampus but not the cerebral cortex and a concurrent increase in the activity of -calpain were observed. In in vitro experiments, a decrease was registered in the content of UT-like substance in the hippocampus in the presence of calcium. This decrease was inhibited by both EDTA and calpastatin treatments. These results implicate the destruction of UT-like substance by -calpain in the ischemic hippocampus.  相似文献   

3.
Epithelial Na Channels (ENaC) are responsible for the apical entry of Na(+) in a number of different epithelia including the renal connecting tubule and cortical collecting duct. Proteolytic cleavage of γ-ENaC by serine proteases, including trypsin, furin, elastase, and prostasin, has been shown to increase channel activity. Here, we investigate the ability of another serine protease, tissue kallikrein, to regulate ENaC. We show that excretion of tissue kallikrein, which is secreted into the lumen of the connecting tubule, is stimulated following 5 days of a high-K(+) or low-Na(+) diet in rats. Urinary proteins reconstituted in a low-Na buffer activated amiloride-sensitive currents (I(Na)) in ENaC-expressing oocytes, suggesting an endogenous urinary protease can activate ENaC. We next tested whether tissue kallikrein can directly cleave and activate ENaC. When rat ENaC-expressing oocytes were exposed to purified tissue kallikrein from rat urine (RTK), ENaC currents increased threefold in both the presence and absence of a soybean trypsin inhibitor (SBTI). RTK and trypsin both decreased the apparent molecular mass of cleaved cell-surface γ-ENaC, while immunodepleted RTK produced no shift in apparent molecular mass, demonstrating the specificity of the tissue kallikrein. A decreased effect of RTK on Xenopus ENaC, which has variations in the putative prostasin cleavage sites in γ-ENaC, suggests these sites are important in RTK activation of ENaC. Mutating the prostasin site in mouse γ-ENaC (γRKRK186QQQQ) abolished ENaC activation and cleavage by RTK while wild-type mouse ENaC was activated and cleaved similar to that of the rat. We conclude that tissue kallikrein can be a physiologically relevant regulator of ENaC activity.  相似文献   

4.
Fractions of commercial Sudan III which were separated by column chromatography were compared for fat staining efficiency. Paraffin sections of chromated mouse liver tissue and sections of both fresh and formalin-fixed rat liver tissue or Musca domestica larvae, cut with the freezing microtome, were used. Evidence is presented that a sample of very highly purified Sudan III has no ability to render a fat stain in fresh, formalin-fixed or chromated tissue. However, certain other fractions from the commercial sample, some completely devoid of Sudan III, had good staining characteristics. It is concluded that some substance or substances, other than Sudan III, is responsible for the staining action of the commercial dye.  相似文献   

5.
Inter-alpha-trypsin inhibitor was purified by a modification of published procedures which involved fewer steps and resulted in higher yields. The preparation was used to study the clearance of the inhibitor and its complex with trypsin from the plasma of mice and to examine degradation of the inhibitor in vivo. Unlike other plasma proteinase inhibitor-proteinase complexes, inter-alpha-trypsin inhibitor reacted with trypsin did not clear faster than the unreacted inhibitor. Studies using 125I-trypsin provided evidence for the dissociation of complexes of proteinase and inter-alpha-trypsin inhibitor in vivo, followed by rapid removal of proteinase by other plasma proteinase inhibitors, particularly alpha 2-macroglobulin and alpha 1-proteinase inhibitor. Studies in vitro also demonstrated the transfer of trypsin from inter-alpha-trypsin inhibitor to alpha 2-macroglobulin and alpha 1-proteinase inhibitor but at a much slower rate. The clearance of unreacted 125I-inter-alpha-trypsin inhibitor was characterized by a half-life ranging from 30 min to more than 1 h. Murine and human inhibitors exhibited identical behavior. Multiphasic clearance of the inhibitor was not due to degradation, aggregation, or carbohydrate heterogeneity, as shown by competition studies with asialoorosomucoid and macroalbumin, but was probably a result of extravascular distribution or endothelial binding. 125I-inter-alpha-trypsin inhibitor cleared primarily in the liver. Analysis of liver and kidney tissue by gel filtration chromatography and sodium dodecyl sulfate gel electrophoresis showed internalization and limited degradation of 125I-inter-alpha-trypsin inhibitor in these tissues. No evidence for the production of smaller proteinase inhibitors from 125I-inter-alpha-trypsin inhibitor injected intravenously or intraperitoneally was detected, even in casein-induced peritoneal inflammation. No species of molecular weight similar to that of urinary proteinase inhibitors, 19,000-70,000, appeared in plasma, liver, kidney, or urine following injection of inter-alpha-trypsin inhibitor.  相似文献   

6.
To determine the impact of genotypic variation in secondary metabolite production on antiherbivore resistance and plant fitness, we genetically silenced biosynthetic genes for nicotine, trypsin proteinase inhibitors (TPI), and jasmonate (JA) production in two accessions of Nicotiana attenuata : one from Utah (UT) which responds to herbivory with JA-induced nicotine and TPI production, and one from Arizona (AZ) which is TPI-deficient but also produces JA-induced nicotine. Transient silencing of JA biosynthesis increased Manduca sexta larval growth on wild type (WT) plants of both accessions, but not on TPI-deficient UT or nicotine-deficient AZ lines, demonstrating that JA-mediated resistance to M. sexta requires TPIs in the UT and nicotine in the naturally TPI-deficient AZ accession. When transplanted into a native UT population, AZ and UT plants, rendered equally able or unable to produce nicotine and TPIs by stable transformation, received significantly different levels of herbivory. Both accessions differed in their resistance depending on the type of herbivores: resistance to rare, voracious herbivores (Saltatoria and Mammalia) was greater in AZ than UT lines, and dependent on nicotine production, while resistance to small, abundant herbivores (Coleoptera and Thysanoptera) was greater in UT lines, and dependent on TPI production. AZ lines produced more flowers and seed capsules than UT lines independently of TPI production costs. This fitness advantage was lost when accessions did not produce nicotine. We conclude that these two accessions have developed different survival strategies and thus differ in the cost-benefit functions of their JA-mediated defences.  相似文献   

7.
8.
The urotensin II (UII)/UII receptor (UT) system is closely related to immune inflammation. In acute liver failure (ALF), the UII/UT system can promote the production and release of proinflammatory cytokines, inducing an inflammatory injury response in liver tissue. However, the mechanism by which the hepatic UII/UT system promotes proinflammatory cytokine production and release is not clear. To solve this problem, we used primary Kupffer cells (KCs) as the model system in the current study. The results showed that after lipopolysaccharide (LPS) stimulation, KCs showed significantly increased expression and release of UII/UT and proinflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β). Pretreatment with urantide, which is a UT receptor antagonist, significantly inhibited the LPS-stimulated expression and release of UII/UT, TNF-α, and IL-1β by KCs. In addition, LPS stimulation induced nuclear p38 mitogen-activated protein kinase (MAPK) protein phosphorylation and expression of the nuclear nuclear factor κB (NF-κB) p65 subunit in KCs and enhanced the binding activity of NF-κB to DNA molecules, whereas urantide pretreatment significantly inhibited the LPS-stimulated nuclear expression and activity of these molecules in KCs. Therefore, our conclusion is that the UII/UT system mediates LPS-stimulated production and release of proinflammatory cytokine by KCs, and this mediating effect at least partially relies on the inflammatory signaling pathway molecules p38 MAPK and NF-κB.  相似文献   

9.
1. Two major forms of xanthine oxidase are demonstrated for the mouse. On polyacrylamide-gel electrophoresis the duodenal form migrates faster towards the anode than that of the liver. Both forms also differ in their (NH(4))(2)SO(4) precipitation patterns and sucrose-density-gradient molecular-weight determinations. 2. The liver form is fully converted into the duodenal form by incubation at 37 degrees C with 2.5mg of crude trypsin/ml for 1(1/2)h, without loss of activity. The trypsin-treated liver form behaves like the normal duodenal form as characterized by electrophoresis, (NH(4))(2)SO(4) precipitation patterns, and sucrose-density-gradient molecular-weight determinations. 3. Partial conversion is also brought about by purified trypsin and chymotrypsin, but not with beta-carboxypeptidase or lipase. The conversion is inhibited by soya-bean trypsin inhibitor. 4. In embryo mice the duodenal form is similar to the liver form on electrophoresis. 5. These studies indicate, as might be expected, that the duodenal form is a modified version of the liver enzyme, probably caused by proteolytic alteration.  相似文献   

10.
Serum-free culture medium conditioned by an established human pancreatic adenocarcinoma cell line, CAPAN-1, contains copious amounts of immunoreactivity due to pancreatic secretory trypsin inhibitor (PSTI) as demonstrated by radioimmunoassay. The immunoreactive substance was purified from the conditioned medium to apparent homogeneity by trypsin affinity and gel filtration chromatography with an overall recovery of 40%, and its primary structure was determined by Edman degradation. The immunoreactive substance is a peptide of 56 amino acid residues with a calculated molecular weight of 6,241. Its amino acid composition, primary structure, and inhibitory effect against trypsin are indistinguishable from those of human pancreatic juice PSTI, indicating that this substance is PSTI itself. This is the first direct demonstration that tumor cells secrete PSTI in vitro. When CAPAN-1 was inoculated into a nude mouse, it produced a tumor and the tumor synthesized human PSTI in vivo, as demonstrated by the fact that the tumor extract contained 99.0 +/- 26.2 ng of human PSTI/mg of protein, while PSTI was not detected in extracts from other tissues examined. Furthermore, high levels of human PSTI (14.3 +/- 2.6 ng/ml) were detected in the serum of tumor-bearing mice but not in that of nontumor-bearing mice, suggesting that PSTI secreted from the tumor appears in the blood circulation. Taken together, these results strongly support the view that the serum levels of PSTI are elevated in cancer-bearing patients due to secretion of this peptide from tumor cells per se.  相似文献   

11.
Rat spleen kallikrein was identified and purified by DEAE-cellulose and monoclonal antibody-affinity chromatography. The purified enzyme has Tos-Arg-OMe esterase activity and kinin-releasing activity from a purified low-molecular-weight kininogen substrate. In the direct radioimmunoassay for tissue kallikrein, the splenic enzyme displays parallelism with standard curves of rat urinary kallikrein. The pH profiles of the Tos-Arg-OMe esterase activities of spleen and urinary kallikrein were identical with optima at 9.0 Rat spleen kallikrein was inhibited strongly by aprotinin and affinity-purified kallikrein antibody and weakly by soybean trypsin inhibitor. The IC50 values were similar to those observed against rat urinary kallikrein. Neither the urinary nor the splenic enzyme was inhibited by lima bean trypsin inhibitor or preimmune serum immunoglobulins. Spleen kallikrein was labeled with [14]diisopropylphosphorofluoridate and visualized by fluorography on a sodium dodecyl sulfate-polyacrylamide gel. The electrophoretic mobility of the splenic enzyme was indistinguishable from that of urinary kallikrein A with an estimated Mr of approx. 38 000. With Western blot analyses using a rabbit anti-kallikrein antibody followed by 125I-labeled protein A binding, the spleen and urinary kallikreins were again visualized at identical positions by autoradiography. The data show that there is a rat splenic tissue kallikrein which is indistinguishable from a renal kallikrein with respect to physicochemical properties, immunological character and susceptibility to inhibitors.  相似文献   

12.
Saline extracts from thymus glands of mice, or thymocyte suspensions, had stimulatory and inhibitory influences on the growth of mammalian cells in vitro. The stimulatory effect appeared at high extract concentrations as amounts of Lowry-positive substance, and at high suspension densities. The inhibitory effect was observed at low concentrations of the extract and at low densities of the suspension. The thymus extract not only affected the initiation of cell proliferation but also influenced proliferation of their descendants. The tissue fragments obtained from normal mouse exhibited the inhibitory action and the one from mice irradiated with 700 R showed the stimulatory effect on the colony formation. These facts may suggest that two different substances responsible for affecting cell growth are produced by different types of cells in the thymus. It was also found that the suspension prolonged the generation time of the cells and that calf serum was antagonistic to those dual actions. Moreover, the loss of inhibitory activity with trypsin treatment strongly suggests that the thymic materials contain a protein as an active site.  相似文献   

13.
Low concentrations of the organic mercurials, p-chloromercuribenzoate or p-chloromercuriphenylsulphonate activate the particulate low Km phosphodiesterase from adipose tissue and liver. Higher concentrations are inhibitory. Enzyme which has been activated by treatment of adipocytes with insulin, is not activated by the organic mercurials although inhibition by higher concentrations is seen. Enzyme from non-insulin treated adipocytes is activated and solubilised by mild trypsin treatment. Enzyme activated by either insulin treatment, or by p-chloromercuribenzoate is not further activated by trypsin, but it is solubilised.  相似文献   

14.
Abstract— A new CNS myelin autoantigen(s) (referred to as M2), different from the encephalitogenic basic protein (BP), can be detected with guinea-pig demyelinating and complement fixing (CF) sera raised against guinea pig CNS tissue or myelin (Lebar et al., 1976). M2 and BP were present in mouse, rat, rabbit, bovine and human CNS tissues when tested with guinea-pig homologous specific antisera; they were not present in non-CNS tissues. Both autoantigens were also detected in newborn guinea-pig myelin and myelin-like fractions. The CF activity of myelin with demyelinating (anti-M2) sera was not altered by trypsin; however, absorption experiments showed that M2 was partly trypsin sensitive. Both antibodies against the trypsin sensitive and the trypsin resistant determinants of M2 were demyelinating. Both determinants of M2 were preselit in mouse, rat, rabbit, bovine‘and human CNS tissues and in guinea-pig newborn myelin. CF BP activity of myelin was partially or even totally abolished by trypsin, but the persistent encephali-togenicity of trypsin-treated myelin could be attributed to non-CF encephalitogenic peptides from BP. In accordance with recent work our results tend to support an inner localization of BP in myelin; M2, on the other hand, would be a surface antigen(s).  相似文献   

15.
Summary The renal origin of kallikrein is now clearly established. However, the presence of kallikrein in urine raises questions about a possible physiological role of this enzyme at the urinary level. We have already demonstrated the presence of kallikrein-like substance in rat ureter. For establishing the continuity of the presence of kallikrein-like substance along the urinary tract we have studied the localization of immunoreactive kallikrein-like substance in urinary bladder of the normal rat by immunohistochemical methods for light- and electron-microscopy, using an antibody against rat urinary kallikrein. By light microscopy, kallikrein-like substance was found to be associated with the lamina propria, which is the connective tissue component which constitutes one layer of the bladder wall. Weak staining was present in the smooth-muscle layer. By immuno-electron microscopy, kallikrein-like substance was localized in fibroblasts which were present in the connective tissue and which penetrated into the layer of smooth muscle; immunoreactivity was observed in endoplasmic reticulum, Golgi apparatus and free polyribosomes. Immunolabelling was demonstrated in no other part of the wall bladder and in no other cellular component. The continuity of the presence of kallikrein-like substance from the kidney to the urinary bladder gives new indications concerning the significance of this system in renal physiology.  相似文献   

16.
Inhibitory antibodies against NADPH-cytochrome P-450 reductase, detergent solubilization to dissociate functional interaction between the reductase and cytochrome P-450, and selective trypsin degradation have been used to characterize flavin-containing monooxygenase activity in microsomes from different tissues and species. A comparison of assay methods is reported. The native microsome-bound flavin-containing monooxygenase of mouse, rabbit, and rat liver, lung, and kidney can metabolize compounds containing thiol, sulfide, thioamide, secondary and tertiary amine, hydrazine, and phosphine substituents. Therefore, this enzyme from these common experimental animals has catalytic capabilities similar to those of the well-characterized porcine liver enzyme. True allosteric activation by n-octylamine does not appear to be a property of either the mouse, rabbit, or rat liver enzymes, but is a property of the pig liver and mouse lung enzymes. The microsomal pulmonary flavin-containing monooxygenase of the rabbit has some unique substrate preferences which differ from the mouse lung enzyme. Both the rabbit and mouse pulmonary enzymes have recently been shown to be distinct enzyme forms. However, the rat pulmonary flavin-containing monooxygenase appears to be catalytically identical to the rat liver enzyme, and does not have any of the unusual catalytic properties of either the rabbit or mouse lung enzymes. Enzyme activity of mouse, rabbit, and rat kidney microsomes is qualitatively similar to the hepatic activities. Substrates which saturate the microsome-bound flavin-containing monooxygenase at 1.0 mM, including thiourea, thioacetamide, methimazole, cysteamine, and thiobenzamide, are metabolized at common maximal velocities. This suggests that the kinetic mechanism of the native enzyme is similar to that established for the isolated porcine liver enzyme in that the rate-limiting step of catalysis occurs after substrate binding, and that all substrates capable of saturating the microsomal enzyme should be metabolized at a common maximal velocity.  相似文献   

17.
Parasite infections in humans have long been associated with specific types of cancers. Schistosoma hematobium is a known inducer of urinary bladder cancer, Helicobacter pylori is a gastric carcinogen, and hepatitis B virus and Opisthorchis viverrini are causative agents of liver cell cancers. Another liver fluke, Fasciola hepatica, has also been identified as a neoplastic risk agent, primarily in animals. We used F. hepatica as a model agent to determine if the presence of an aggressive liver fluke could induce mutagenic events in mammalian tissue. Using the Big Blue® transgenic mouse assay, we found a two-fold increase in lacI mutations in cells harvested from mice harboring F. hepatica worms when compared to uninfected control animals. These data indicate that biological infections can cause increased genetic damage in surrounding host tissue.  相似文献   

18.
A trypsin inhibitor was isolated from bovine colostrum by affinity chromatography. Immunoelectrophoresis detected two immunogenic components in the isolated inhibitor, but only one of these was specific for the inhibitor; the other one was identical with an antigen present in liver, kidney, spleen, adrenal, thyroid, thymus, brain, ovarian, testicular and udder tissue and in bull seminal plasma. Using immunoabsorption and immunofluorescence it was shown that the antigens specific for the trypsin inhibitor of colostrum could be demonstrated only in the tissue of an udder that is secreting colostrum. The inhibitor is secreted by the secretory epithelium of the milk alveoli of the udder, during the period when the latter secretes colostrum. This inhibitor was not detected in the milk. Cross-reaction between antisera to colostral inhibitor and basic pancreatic inhibitor or seminal plasma inhibitors yielded negative results. Antiserum to bovine colostral inhibitor showed a positive reaction with inhibitor isolated from porcine colostrum.  相似文献   

19.
A protein was isolated from plasma of partially (70%) hepatectomized rats that, injected in mice, increases the uptake of [3H]thymidine by liver DNA by 200-300% over that by injected control saline. The purification procedure consists essentially of three chromatography steps, employing Sephadex G-75, DEAE-cellulose and hydroxyapatite. The hepatic promoter (HP) preparation shows a single band in SDS/polyacrylamide (15%)-gel electrophoresis (silver stained), with an Mr of 64 000; its activity is suppressed by trypsin or pepsin and is unaffected by deoxyribonuclease or ribonuclease. On injection into mice (150 ng/mouse), it increases the mitotic index of the liver. It shows organ-specificity, acting on liver but not on spleen, kidney, lung or brain. In primary liver cultures, it produces an increase in uptake of [3H]thymidine into DNA in the range 1-10 ng/ml. In this system in vitro, it increases the uptake of 22Na+ immediately after addition.  相似文献   

20.
The effects of single large doses of the porphyrin-heme precursor ?d-aminolevulinic acid on tissue porphyrins and on δ-aminolevulinate synthase and heme oxygenase, the rate-living enzymes of liver heme synthesis and degradation respectively, were studied in the chick embryo in ovo, in the mouse and in the rat. δ-Aminolevulinic acid treatment produced a distinctive pattern characterized by extensive tissue porphyrin accumulation and alterations in these rate-limiting enzymes in the liver. Repression of basal or allylisopropylacetamide-induced liver δ-aminolevulinate synthase was observed and, in the mouse and the rat, induction of liver heme oxygenase after δ-aminolevulinic acid treatment, in a manner similar to the known effects of hemin on these enzymes. In the chick embryo liver in ovo heme oxygenase was substantially higher than in rat and mouse liver, and was not significantly induced by δ-aminolevulinic acid or other compounds, including hemin, CS2 and CoCl2. Levulinic acid, an analogue of δ-aminolevulinic acid, did not induce heme oxygenase in mouse liver. δ-Aminolevunilic acid treatment did not impair ferrochelatase activity but was associated with slight and variable decreases in liver cytochrome P-450. Treatment of chick embryos with a small ‘priming’ dose of 1,4-dihydro-3,5-dicarbethoxycollidine, which impairs liver ferrochelatase activity, accentuated porphyrin accumulation after δ-aminolevulinic acid in the liver. These observations indicate that exogenous δ-aminolevulinic acid is metabolized to porphyrins in a number of tissues and, at least in the liver, to a physiologically significant amount of heme, thereby producing an increase in the size of one or more of the heme pools that regulate both heme systhesis and degradation. It is also possible than when δ-aminolevulinic acid is markedly overproduced in vivo it may be transported to many tissues and re-enter the heme pathway and alter porphyrin-heme metabolism in cells and tissues other than those in which its overproduction primarily occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号