首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Planktonic cladocerans of the genus Daphnia are an example of organisms whose ability to disperse among aquatic habitats is limited to dispersal of dormant eggs, encapsulated in protective structures called ephippia. In the present study, we aimed to quantify the production of floating and sinking ephippia in lakes to test the hypothesis that, even if they eventually sink, most of them are first floating at the surface. In addition, we checked the egg content status of the ephippia. The results of this study revealed numbers of ephippia floating at lakes surface reaching thousands per square metre at the time of ephippia production, and constituting substantial share of that production. In studied shallow lowland lakes and in a deep mountain lake, most ephippia were first floating at the water surface, while in deep lowland lakes the proportion was reversed. Approximately half of ephippia that appeared initially at the water surface sank during the six-week sampling period. The egg content status did not differ between floating and sinking ephippia. High numbers of ephippial females staying in the surface layers at night in a mountain lake, and a laboratory experiment with ephippial females indicated that ephippia are actively oviposited to the water surface by gravid females.  相似文献   

2.
1. Freshwater zooplankton often produce diapausing eggs to survive environmental stress. The diapausing eggs of Daphnia (Crustacea, Cladocera) are encased in an ephippium that either floats at the surface or sinks to the sediment. These two types of ephippia may represent different strategies between spatial (floaters) and temporal (sinkers) dispersal of offspring. 2. We observed floating and sinking characteristics of ephippia obtained from eight lakes. We then conducted an experiment with 26 Daphnia pulicaria clones obtained from six of these lakes and observed the production of buoyant and non‐buoyant ephippia under high and low food conditions. 3. Ephippia were more often non‐buoyant than buoyant both from females caught in nature and those reared in the laboratory. The experiment revealed that each clone was able to produce both types of ephippia, but that there was considerable among‐clone variation in the percentage of non‐buoyant ephippia produced. 4. We conclude that production of non‐buoyant versus buoyant ephippia may be driven by both genetic and environmental factors.  相似文献   

3.
Dispersal connects patches within metapopulations and is crucial to the persistence of many species, particularly those living in discontinuous habitat. Rock pools are excellent habitats in which to study dispersal in time as well as space, because many of the organisms that live within them make resistant long-lived dormant stages, they are often abundant, and they are easy to sample. The rock pools on Appledore Island, Gulf of Maine, USA, are home to several cladocerans, including Moina macrocopa and Daphnia pulex × pulicaria hybrids. Both taxa exist in extremely high abundances in some pools and make diapausing eggs enclosed in ephippia that are dispersed in time by hatching long after they are produced, and are also known to spatially disperse via pool overflows and by adhering to gulls. I hypothesized that ephippia of both taxa would also be spatially dispersed by wind. I found that while Moina are present in more pools, more abundant in those pools, and produce more ephippia, many more Daphnia ephippia dispersed into traps placed around the island. This may be explained, in part, by differences in the buoyancy of ephippia between the two species. A higher propensity to disperse may result in Daphnia relying more heavily on the spatial context of rock pools than Moina.  相似文献   

4.
We studied the egg banks of Daphnia gr. longispina in four acidified lakes in the Bohemian Forest (Czech Republic, Europe). Daphnia had become extinct in three of the studied lakes due to anthropogenic acidification and we assessed the possibility of autochthonous recovery of the population after recent amelioration of the lake environment. We determined the ephippia distribution in eleven cores 10–30 cm long, and the state of Daphnia resting eggs in over 13 000 ephippia from eight cores. Apparently well-preserved eggs were used for hatching experiments and for DNA amplification. Vertical profiles of ephippia densities in several cores did not agree with historical data on the Daphnia presence in the lakes, as the sediment had been repeatedly disturbed by human activities in the past. Ephippia are present near the surface of the sediment in all lakes, and they might therefore receive hatching cues. We were not able, however, to prove that viable eggs are present in the ephippia banks of the lakes. The percentage of the well-preserved eggs in all but one core was below 1%. In addition, no egg hatched in the hatching experiments and we were not able to amplify DNA from the preserved eggs of lakes where Daphnia is extinct, although amplification from relatively young eggs from the fourth lake was successful in 60% of the cases. We conclude that the recovery of Daphnia populations in studied lakes from autochthonous sources is unlikely.  相似文献   

5.
We investigated the life history alterations of coexisting Daphnia species responding to environmental temperature and predator cues. In a laboratory experiment, we measured Daphnia life history plasticity under different predation risk and temperature treatments that simulate changing environmental conditions. Daphnia pulicaria abundance and size at first reproduction (SFR) declined, while ephippia (resting egg) formation increased at high temperatures. Daphnia mendotae abundance and clutch size increased with predation risk at high temperatures, but produced few ephippia. Thus, each species exhibited phenotypic plasticity, but responded in sharply different ways to the same environmental cues. In Glen Elder reservoir, Kansas USA, D. pulicaria dominance shifted to D. mendotae dominance as temperature and predation risk increased from March to June in both 1999 and 2000. Field estimates of life history shifts mirrored the laboratory experiment results, suggesting that similar phenotypic responses to seasonal cues contribute to seasonal Daphnia population trends. These results illustrate species-specific differences in life history plasticity among coexisting zooplankton taxa.  相似文献   

6.
1. The exotic cladoceran Daphnia lumholtzi has recently invaded freshwater systems throughout the United States. Daphnia lumholtzi possesses extravagant head spines that are longer than those found on any other North American Daphnia. These spines are effective at reducing predation from many of the predators that are native to newly invaded habitats; however, they are plastic both in nature and in laboratory cultures. The purpose of this experiment was to better understand what environmental cues induce and maintain these effective predator‐deterrent spines. We conducted life‐table experiments on individual D. lumholtzi grown in water conditioned with an invertebrate insect predator, Chaoborus punctipennis, and water conditioned with a vertebrate fish predator, Lepomis macrochirus. 2. Daphnia lumholtzi exhibited morphological plasticity in response to kairomones released by both predators. However, direct exposure to predator kairomones during postembryonic development did not induce long spines in D. lumholtzi. In contrast, neonates produced from individuals exposed to Lepomis kairomones had significantly longer head and tail spines than neonates produced from control and Chaoborus individuals. These results suggest that there may be a maternal, or pre‐embryonic, effect of kairomone exposure on spine development in D. lumholtzi. 3. Independent of these morphological shifts, D. lumholtzi also exhibited plasticity in life history characteristics in response to predator kairomones. For example, D. lumholtzi exhibited delayed reproduction in response to Chaoborus kairomones, and significantly more individuals produced resting eggs, or ephippia, in the presence of Lepomis kairomones.  相似文献   

7.
1. We studied the role of zooplankton in biomanipulation and the subsequent recovery phase in the Enonselkä basin of Lake Vesijärvi, using subfossil cladocerans in annually laminated sediment. Measures to restore the Enonselkä basin included reduction in external nutrient loading and mass removal of plankti‐ and benthivorous fish. Water clarity increased and the lake changed from a eutrophic to a mesotrophic state. However, some signs of increased turbidity were observed after 5–10 years of successful recovery. 2. Annual laminae in a freeze core sample were identified and sliced, based on the seasonal succession of diatoms. Cladoceran remains and rotifer eggs were counted, and Daphnia ephippia and Eubosmina and Bosmina ephippia and carapaces were measured. Annual changes in pelagic species composition were studied with principal component analysis. Individual species abundance, size measurements and various cladoceran‐based indices or ratios (commonly used to reconstruct changes in trophic state and fish predation) were tested for change between four distinct periods: I (1985–1988) dense fish stocks, poor water quality; II (1989–1992) fish removal; III (1993–1997) low fish density, improved water quality; IV (1998–2002) slightly increased fish density and poorer water quality. 3. After the removal of fish, the mean size of Daphnia ephippia and Eubosmina crassicornis ephippia and carapaces increased significantly. In contrast, the percentage of Daphnia did not increase. When based on ephippia, the ratio Daphnia/(Daphnia + E. crassicornis) increased, but the interpretation was obscured by the tolerance of fish predation by small Daphnia and by the fact that bosminids were the preferred food of roach. Moreover, ephippial production by E. crassicornis decreased in recent years. 4. The abundance of Diaphanosoma brachyurum and Limnosida frontosa increased significantly after the fish population was reduced, while that of Ceriodaphnia and rotifers decreased. 5. The expanding littoral vegetation along with improved water clarity was clearly reflected in the concentration of littoral species in the deep sediment core. The species diversity index for the entire subfossil community also increased. 6. The period of faltering recovery was characterised by greater interannual variability and an increased percentage of rotifers. Nevertheless, the mean sizes of Daphnia ephippia and E. crassicornis ephippia and carapaces indicated a low density of fish. The deteriorating water quality was apparently related to multiple stressors in the catchment after rehabilitation, such as intensified lakeshore building, as well as to exceptional weather conditions, challenging the management methods in use.  相似文献   

8.
9.
  1. Organisms in the wild are faced with multiple threats and a common response is a change in behaviour. To disentangle responses to several threats, we exposed two differently sized species of the freshwater invertebrate Daphnia to solar ultraviolet radiation (UVR) and predation from either moving pelagic or benthic ambush predators.
  2. Using an advanced nanotechnology-based method, we tracked the three-dimensional movements of those mm-sized animals at the individual level. Each behavioural trial was performed both under conditions resembling night (no UVR) and day (UVR) and we examined patterns of the depth distribution and swimming speed by Daphnia across three treatments: no predator (control); bottom-dwelling damselfly (Calopteryx sp.); and fish (stickleback, Pungitius pungitius) predators. We also quantified the actual predation rate by the two predators on the two Daphnia species, Daphnia manga and Daphnia pulex.
  3. We show that individual Daphnia are able to identify predators with different feeding habitats, rank multiple and simultaneously occurring risks and respond in accordance with the actual threat; complex responses that are generally associated with larger animals.
  4. In a broader context, our results highlight and quantify how a cocktail of everyday threats is perceived and handled by invertebrates, which advances our understanding of species distribution in space and time, and thereby of population dynamics and ecosystem function in natural ecosystems.
  相似文献   

10.
11.
The simultaneous hatching of Daphnia resting eggs from a number of different lakes and ponds using one set of hatching cues can be difficult to achieve as environmental conditions differ considerably between water bodies. Therefore, optimal hatching conditions for ephippial eggs originating from shallow temporary waters may differ from those found in large lakes. The aim of our study was to compare the optimal thermal conditions for hatching ephippial eggs of Daphnia found in permanent lakes and those from shallow temporary ponds. We used ephippial eggs of Daphnia from the longispina species complex originating from two temporary city ponds and two deep lakes in Poland. The ephippia were protected against overheating at all stages of the field and laboratory work to prevent activation or killing of the eggs. After a refractory period (imposed storage in cool and dark conditions), ephippia were incubated at six different temperatures (6, 9, 12, 15, 18 and 21 °C) under a 16:8 L:D light regime. Our results indicate that hatching of resting eggs of Daphnia that inhabit lakes or ponds may require different thermal conditions. The hatching success of ephippial eggs originating from temporary waters was relatively high (30–56%) at all tested incubation temperatures, while for the ephippial eggs from the deep lakes it was lower (7–37%) and inversely related to water temperature. The divergent hatching responses of the ephippial eggs originating from temporary pools and lakes may reflect the typical thermal conditions during hatching in their native habitats. While in the deep lakes of the temperate zone Daphnia hatching typically occurs during the low water temperatures of early spring, in shallow ponds Daphnia hatching may occur throughout the year at varying water temperatures, from a few to over a dozen degrees Celsius.  相似文献   

12.
  1. Aquatic ecosystems are biodiversity hot spots across many landscapes; therefore, the degradation of these habitats can lead to decreases in biodiversity across multiple scales. Salinisation is a global issue that threatens freshwater ecosystems by reducing water quality and local biodiversity. The effects of salinity on local processes have been studied extensively; however, the effects of salinisation or similar environmental stressors within a metacommunity (a dispersal network of several distinct communities) have not been explored.
  2. We tested how the spatial heterogeneity and the environmental contrast between freshwater and saline habitat patches influenced cladoceran biodiversity and species composition at local and regional scales in a metacommunity mesocosm experiment. We defined spatial heterogeneity as the proportion of freshwater to saltwater patches within the metacommunity, ranging from a freshwater-dominated metacommunity to a saltwater-dominated metacommunity. Environmental contrast was defined as the environmental distance between habitat patches along the salinity gradient in which low-contrast metacommunities consisted of freshwater and low-salinity patches and high-contrast metacommunities consisted of freshwater and high-salinity patches.
  3. We hypothesised that the α-richness of freshwater patches and metacommunity γ-richness would decrease as freshwater patches became less abundant along the spatial heterogeneity gradient in both low- and high-contrast metacommunities, because there would be fewer freshwater patches that could serve as source populations for declining populations. We hypothesised that low-contrast metacommunities would support more species across the spatial heterogeneity gradient than high-contrast metacommunities, because, via dispersal, low-salinity patches can support halotolerant freshwater species that can mitigate population declines in neighbouring freshwater patches, whereas` high-salinity patches will mostly support halophilic species, providing fewer potential colonisers to freshwater patches.
  4. We found that α-richness of freshwater mesocosms and metacommunity γ-richness declined in saline-dominated metacommunities regardless of the environmental contrast between the freshwater and saline mesocosms. We found that environmental contrast influenced freshwater and saline community composition in low-contrast metacommunities by increasing the abundances of species that could tolerate low-salinity environments through dispersal, whereas freshwater and high-salinity communities showed limited interactions through dispersal.
  5. Freshwater mesocosms had a disproportionate effect on the local and regional biodiversity in these experimental metacommunities, indicating that habitat identity may be more important than habitat diversity for maintaining biodiversity in some metacommunities. This study further emphasises the importance in maintaining multiple species-rich habitat patches across landscapes, particularly those experiencing landscape-wide habitat degradation.
  相似文献   

13.
Direct predation upon parasites has the potential to reduce infection in host populations. For example, the fungal parasite of amphibians, Batrachochytrium dendrobatidis (Bd), is commonly transmitted through a free‐swimming zoospore stage that may be vulnerable to predation. Potential predators of Bd include freshwater zooplankton that graze on organisms in the water column. We tested the ability of two species of freshwater crustacean (Daphnia magna and D. dentifera) to consume Bd and to reduce Bd density in water and infection in tadpoles. In a series of laboratory experiments, we allowed Daphnia to graze in water containing Bd while manipulating Daphnia densities, Daphnia species identity, grazing periods and concentrations of suspended algae (Ankistrodesmus falcatus). We then exposed tadpoles to the grazed water. We found that high densities of D. magna reduced the amount of Bd detected in water, leading to a reduction in the proportion of tadpoles that became infected. Daphnia dentifera, a smaller species of Daphnia, also reduced Bd in water samples, but did not have an effect on tadpole infection. We also found that algae affected Bd in complex ways. When Daphnia were absent, less Bd was detected in water and tadpole samples when concentrations of algae were higher, indicating a direct negative effect of algae on Bd. When Daphnia were present, however, the amount of Bd detected in water samples showed the opposite trend, with less Bd when densities of algae were lower. Our results indicate that Daphnia can reduce Bd levels in water and infection in tadpoles, but these effects vary with species, algal concentration, and Daphnia density. Therefore, the ability of predators to consume parasites and reduce infection is likely to vary depending on ecological context.  相似文献   

14.
To elucidate the possibilities of using zooplankton remains in the surface sediment to describe present-days community structure and population dynamics of zooplankton, fish abundance and temperature, we compared contemporary data sampled in the pelagial during summer with the sediment record from the upper 1 cm of the sediment in 135 lakes covering a latitude gradient from Greenland in the north to New Zealand in the south. The abundance of three genera Bosmina, Daphnia and Ceriodaphnia of the total pool of ephippia was significantly related to the total abundance of the same taxa in the pelagic zone. However, in most lakes the abundance of Ceriodaphnia was higher in the sediment than in the water, which may be attributed to the overall preference by this genus for the littoral habitat. Using contemporary data from 27 Danish lakes sampled fortnightly during summer for 10 years, we found substantial inter-annual variations in the abundance of Daphnia spp., Ceriodaphnia spp., B. longirostris and B. coregoni. Yet, the sediment record mimicked the medium level well for most of the lakes, which suggests that the sediment record provides an integrated picture of the pelagic cladoceran community, which otherwise can be obtained only by long-term frequent contemporary sampling for several years. The contribution of Daphnia to the sum of Daphnia and Bosmina ephippia was negatively correlated with the abundance of fish expressed as catch per night in multi-mesh sized gill nets (CPUE). Yet, region-specific differences occurred, which partly could be eliminated by including nutrient state expressed as total phosphorus (TP) in a multiple regression. The average ratio of ephippia to the sum of ephippia and carapaces of Bosmina varied 40-fold between the sampling regions and was significantly negatively related to summer mean air temperature, and for Danish lakes also, albeit weakly, to fish CPUE but not to chlorophyll a. Apparently, temperature is the most important factor determining the ratio of parthenogenetic to ephippia producing specimens of Bosmina. We conclude that the sediment record of cladocerans is a useful indicator of community structure of pelagic cladocerans and the abundance of fish and temperature.  相似文献   

15.
16.
17.
18.
19.
20.
1. The dormant eggs of Daphnia (Crustacea: cladocera) are encased in a protective, chitonous casing known as an ephippium. Ephippia are pigmented with melanin, and the degree of pigmentation ranges from transparent to opaque. Variation in pigmentation exists within and across populations and species, raising questions about the factors that influence the natural distribution of pigmentation. 2. We used image analysis to quantify pigmentation in ephippial casings of Daphnia pulicaria that were produced both in the field and in the laboratory. The percentage of the surface area of ephippia that is darkly pigmented ranged from 0.5 to 99.5%. The range, mean and variance of ephippial pigmentation varied across our 11 study lakes. 3. Laboratory experiments compared clonal variation (five clones/lake) and population variation (five lakes) at three temperatures (15 °C, 20 °C and 25 °C). The degree of pigment variation between clones was much greater than pigment variation between temperatures, indicating that there is a genetic component to pigmentation in the ephippia which is stronger than the effect of temperature. 4. Comparisons of pigment levels and lake characteristics were used to identify physical and biological factors associated with ephippial pigmentation. Investment in ephippial production was the strongest predictor with darker ephippia occurring more often in lakes with the highest ephippial production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号