首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two groups of eight adults successfully trained with biofeedback for increases in 40-Hz EEG responses in left or right hemispheres also demonstrated significant 40-Hz EEG increases during baseline periods, and increases in the contralateral hemisphere during training periods. No changes in heart rate, 40-Hz EMG, or 21- to 31-Hz beta, alpha, or theta EEG occurred over training days. Three subjects returning for additional training demonstrated suppression of 40-Hz EEG. A group of four subjects experiencing daily bidirectional training produced substantial within-session control of 40-Hz EEG but no changes over days. Data from posttraining tests without feedback for successful subjects in both groups indicated significant control of 40-Hz EEG responses in the initial parts of these sessions, and some correlated changes in other EEG responses. Measures of successful subjects' experiences during training and control tests indicated awareness of changes in subjective concomitants of EEG responses. This study suggests further strategies for research on behavioral correlates of EEG activity.  相似文献   

2.
Abstract

Background: Many researchers have tried to investigate pain by studying brain responses. One method used to investigate pain-related brain responses is continuous electroencephalography (EEG). The objective of the current study is to add on to our understanding of EEG responses during pain, by differentiation between EEG patterns indicative of (i) the noxious stimulus intensity and (ii) the subjective pain sensation.

Methods: EEG was recorded during the administration of tonic experimental pain, consisting of six minutes of contact heat applied to the leg via a thermode. Two stimuli above pain threshold, one at pain threshold and two non-painful stimuli were administered. Thirty-six healthy participants provided a subjective pain rating during thermal stimulation. Relative EEG power was calculated for the frequency bands alpha1, alpha2, beta1, beta2, delta, and theta.

Results: Whereas EEG activity could not be predicted by stimulus intensity (except in one frequency band), subjective pain sensation could significantly predict differences in EEG activity in several frequency bands. An increase in the subjective pain sensation was associated with a decrease in alpha2, beta1, beta2 as well as in theta activity across the midline electrodes.

Conclusion: The subjective experience of pain seems to capture unique variance in EEG activity above and beyond what is captured by noxious stimulus intensity.  相似文献   

3.
4.
Is the alpha rhythm a control parameter for brain responses?   总被引:4,自引:0,他引:4  
 The main goal of the present study is to develop a conceptual analysis of alpha response in the brain based on single sweep evaluation. A new method was employed to estimate a set of single-sweep parameters and quantify the oscillatory behaviour of single, electroencephalograph (EEG) sweeps. It was aimed to demonstrate that brain alpha responses are governed by spontaneous alpha activity and to validate the principle of brain response excitability. Because the spontaneous alpha activity depends on both the topology of recording and the subject’s age, topology and age models were used. Spontaneous and evoked alpha activity were recorded at frontal and occipital sites in three groups of subjects: 3-year-old children, young adults and middle-aged subjects. Amplitude, enhancement and phase-locking of single alpha responses to visual stimuli were analysed. Major results showed that: (1) visual alpha responses could be recorded only if the alpha rhythm was developed in the spontaneous EEG independent of electrode location; (2) middle-aged adults showed more expressed frontal spontaneous alpha activity in comparison with young adults; (3) accordingly, alpha responses with higher amplitude and stronger phase-locking were produced over the frontal brain area in middleaged than young adults. These results validate the principle of brain response excitability and demonstrate that a shift towards frontal brain areas for both the spontaneous and evoked alpha activity occurs with increasing age in adults. The results are discussed in the context of the diffuse and distributed alpha system of the brain. Age-dependent changes in frontal alpha activity are suggested to be related to frontal brain functioning during aging. Received: 6 November 1995 / Accepted in revised form: 13 March 1997  相似文献   

5.
A comprehensive study with the assessment of reactive responses to motor tasks was performed in nine patients with a tumor localized in the frontal divisions of the brain using two methodological approaches: functional magnetic resonance imaging (fMRI) and EEG. The data obtained were compared to the results of a similar study on 12 healthy subjects. It was established that cerebral pathology was associated with disorders of functional specialization and an increase in the diffuse component of reactivity. The fMRI responses were characterized by greater intactness compared to the EEG parameters of reactive changes. These features are especially marked when an afferent stimulus is sent to the damaged hemisphere. The characteristics of the involvement of individual EEG bands in the formation of motor responses and changes in the fMRI response topography are determined by the degree of cerebral dysfunction reflected by the pattern of baseline EEG reorganization and the severity of the motor defect. The predominant increase in the coherence of slow rhythms in the damaged hemisphere irrespective of the target of the afferent stimulus in patients with severe cerebral dysfunction reflects the dominant formation of a pathological focus and is indicative of a greater, compared to healthy subjects, involvement of deep brain structures in the reactive process, which is confirmed by the fMRI data.  相似文献   

6.
Independent Component Analysis (ICA) was used for 19-channel resting EEG analysis 111 patients at early stages of depressive disorder and 526 age-matched healthy subjects. Comparison of independent components power spectra in depressed patients and healthy subjects in two states: Eyes closed and Eyes open, has revealed significant differences between groups for three frequency bands: Theta (4-7.5 Hz), Alpha (7.5-14 Hz), and Beta (14-20 Hz). Increased power of alpha and theta activity in depressed patients at parietal and occipital sites may be caused by decreased cortical activation of these regions. Diffuse enhancement of beta activity level can correlate with anxiety symptoms which take an important place in clinical picture of depressive disorder at early stages. Using of ICA method for comparison of spectral characteristics of EEG in groups of patients with different brain pathology and healthy subjects gives a possibility to localize more precisely the discovered differences as compare to traditional analysis of EEG spectra.  相似文献   

7.
The present study investigated pharmacokinetic and electroencephalographic responses to caffeine (140 mg) in two groups of healthy volunteers reporting, or not, caffeine-related sleep disturbances. Significant differences in caffeine consumption and smoking habits were observed between the two groups. Plasma samples were taken from each subject before (T0) and after caffeine intake at 0.5, 1, 2, 4, 6 and 24 h. Three pharmacokinetic parameters: half-life (t1/2), maximum time (Tmax) and maximum plasma concentration (Cmax) were calculated from caffeine plasma concentration measurements determined by reversed phase HPLC analysis. Caffeine-sensitive subjects showed significantly greater half-life values when calculated on 24 h after the administration than tolerant subjects (p<0.05). Since the elimination kinetics were similar on the first 6 h after caffeine administration, the increased caffeine clearance observed overnight, when smoking was resumed in the control group, may indicate a short delay for the induction of hepatic cytochrome, reported here for the first time. Electrophysiological responses to caffeine, including vigilance and cortical activity, were assessed by ambulatory electroencephalographic (EEG) recorded during a period of 6 h before and after caffeine consumption. Following caffeine intake, the caffeine-intolerant subjects presented an increase in vigilance levels with faster peak alpha, beta frequency and lower delta and theta power when compared to tolerant subjects. Pharmacokinetic parameters and EEG data showed significant differences between sleep-sensitive and control subjects. These variations may be, in part, explained by cigarette smoking and the higher caffeine intake observed in the subjects of the control groups while caffeine sleep-sensitive subjects have a significantly lower caffeine intake, as already reported in previous studies on patients with sleep disturbances.  相似文献   

8.
The following objectives were set out to study the effect of EEG α power increase training on the heart rate variability (HRV) as an index of the autonomic regulation of cognitive functions: (1) to establish the interrelation between a voluntary increase in the α power in the individual upper α band and the HRV and related characteristics of cognitive and emotional spheres; (2) to determine the nature of the relationship between the α-activity indices and HRV depending on the resting α-frequency EEG pattern; and (3) to study how the individual α-frequency EEG pattern is reflected in the HRV changes as a result of biofeedback training. Psychometric indices of cognitive performance and the characteristics of EEG α activity and HRV were recorded in 27 healthy men 18–34 years of age before, during, and after ten training sessions of a voluntary increase in α power in the individual upper α band with the eyes closed. To determine the biofeedback effect in the α power increase training, the data of two groups were compared: the experimental, with a real biofeedback (14 subjects), and the control, with a sham biofeedback (13 subjects). The follow-up effect of the training was assessed one month after its end. The results showed that α biofeedback training increased the resting α frequency, improved cognitive performance, reduced psychoemotional stress, and increased HRV only in the subjects with a low baseline α frequency. In the subjects with a high baseline resting α frequency, the α biofeedback training had no effect on the resting α power and cognitive performance but reduced the HRV (judging by the pNN 50 parameter). The positive correlation between the α peak frequency and HRV in subjects with initially low α frequency and the negative correlation in the subjects with a high baseline α frequency explains the opposite biofeedback effects on HRV in subjects with low and high α frequency. From the theoretical standpoint, the results of this study contribute to understanding the mechanisms of heart-brain neurovisceral relationships and their effect on the cognitive performance. From the applied standpoint, they suggest that EEG biofeedback can be used for improving autonomic regulation in healthy subjects and the development of individual approaches to the development of the biofeedback technology, which can be used both in clinical practice for treatment and rehabilitation of psychosomatic syndromes and in educational training.  相似文献   

9.
We investigated the replicability of the source location, amplitude and latency measures of the auditory evoked N1 (EEG) and N1m (MEG) responses. Each of the 5 subjects was measured 6 times in two recording sessions. Responses to monaural stimuli were recorded from 122 MEG and 64 EEG channels simultaneously. The EEG data were modeled with a symmetrically-located dipole pair. For the MEG data, one dipole in each hemisphere was located independently using a subset of channels. Standard deviation (SD) was used as a measure for replicability. The average SD of the x, y and z coordinates of the contralateral N1m dipole was about 2 mm, whereas the corresponding figures for the ipsilateral N1m and the contra- and ipsilateral N1 were about twice as large. The SDs of the dipole amplitudes and latencies were almost equal with MEG and EEG. The amplitude and latency measures of the MEG field gradient waveforms were almost as replicable as those of the dipole models. The results suggest that both MEG and EEG can be used for investigating the simultaneous activity of the left and right auditory cortices independently, MEG being superior in certain experimental setups.  相似文献   

10.
In chronic experiments on cats, three-phasic responses of neuronal microsystems in the cortical somatic area I were studied during habituation of the EEG activation reactions. Repeated stimuli of different modalities were used: electrical pulses to the forepaw, sounds, direct stimulation of the mesencephalic RF. Simultaneously with the extinction of EEG activation reactions, the three-phasic responses of the multiunit activity (MUA) also became progressively extinct: the 1st phase of primary excitation--only a little, the 2nd phase (inhibitory)--greatly, as well as the 3rd phase--the phase of secondary excitation (if it existed at the beginning). The MUA responses to all stimuli show that these neuronal microsystems are polysensory. Relatively to the nonspecific activating RF macrosystem, the investigated neuronal microsystems are autonomous because their two functionally opposed response phases--the 1st excitatory and the 2nd inhibitory--occur against the monotonous excitatory background of the EEG activation. But in some way the neuronal microsystems are connected with the RF-system because of the parallel development of the extinction process.  相似文献   

11.
The frequency-amplitude characteristics of the brain electrical activity were studied in two groups of subjects: (1) with high and (2) with low indexes of "emotional ear" (the ability to successfully recognize emotions in speech). Comparison of EEG power characteristics between the two groups of subjects permitted the authors to make a conclusion that the persons with lower indexes of "emotional ear" had a much higher EEG activation level as compared to the persons with higher "emotional ear" indexes. A different dynamics of the cortical activation was also observed in the process of recognition of emotions by alpha-rhythm amplitude. It was shown that the persons with higher indexes of recognition had higher alpha-rhythm amplitude, whereas the persons who were less successful in recognition of speech emotions had a contrary tendency: the amplitude on the alpha band decreased in the process of the experiment.  相似文献   

12.
 A new method is presented for quantitative evaluation of single-sweep phase and amplitude electroencephalogram (EEG) characteristics that is a more informative approach in comparison with conventional signal averaging. In the averaged potential, phase-locking and amplitude effects of the EEG response cannot be separated. To overcome this problem, single-trial EEG sweeps are decomposed into separate presentations of their phase relationships and amplitude characteristics. The stability of the phase-coupling to stimulus is then evaluated independently by analyzing the single-sweep phase presentations. The method has the following advantages: information about stability of the phase-locking can be used to assess event-related oscillatory activity; the method permits evaluation of the timing of event-related phase-locking; and a global assessment and comparison of the phase-locking of ensembles of single sweeps elicited in different processing conditions is possible. The method was employed to study auditory alpha and theta responses in young and middle-aged adults. The results showed that whereas amplitudes of frequency responses tended to decrease, the phase-locking increased significantly with age. The synchronization with stimulus (phase-locking) was the only parameter reliably to differentiate the brain responses of the two age groups, as well as to reveal specific age-related changes in frontal evoked alpha activity. Thus, the present approach can be used to evaluate dynamic brain processes more precisely. Received: 12 February 1996 / Accepted in revised form: 11 October 1996  相似文献   

13.
This study explores a model in which perceived control is affected by multiple sources of feedback at three different stages of the control sequence--person, response, and outcome. Behavior that enhances feedback is termed activation, while behavior that diminishes feedback is termed inhibition. The study tests the hypothesis that activation at any stage of the sequence leads to greater perceived control than inhibition. Eighty subjects increased or decreased their brain-wave activity (EEG) by making a tone go either on or off, using either an active or a passive strategy. Following 10 60-second trials, subjects rated their perception of control over their EEG activity. The hypothesis that making a tone go on (activation of the outcome) leads to a greater perception of control than making the tone go off (inhibition of the outcome) was confirmed only when subjects decreased their EEG activity. Perceived control was not significantly correlated with actual control, supporting the expectation that they are separately mediated. The results did not support the hypothesis that increasing EEG activity or using an activity strategy would lead to a greater perception of control than decreasing EEG or using a passive strategy. These findings are interpreted as evidence that attention to feedback may be necessary for the predicted bias in perceived control to occur, and that activation and inhibition should be operationalized as the absolute presence versus absence of feedback in testing the hypothesis for the first two stages of control.  相似文献   

14.
The present study tested the hypothesis that perceived exertion during prolonged exercise in hot environments is associated with changes in cerebral electrical activity rather than changes in the electromyogram (EMG) of the exercising muscles. Therefore, electroencephalogram (EEG) in three positions (frontal, central, and occipital cortex), EMG, rating of perceived exertion (RPE), and core temperature were measured in 14 subjects during submaximal exercise in normal (18 degrees C, control) and hot (40 degrees C, hyperthermia) environments. RPE increased from 11 +/- 1 units at 5 min to 20 +/- 0 units at exhaustion (50 +/- 3 min) in the trial with progressive hyperthermia, whereas exercise in the control trial was maintained with a stable core temperature for 1 h without exhausting the subjects. Altered EEG activity was observed in all electrode positions, and stepwise forward-regression analysis identified core temperature and a frequency index of the EEG over the frontal cortex as the best predictors of RPE. In contrast, there were no significant correlations between RPE and any of the measured EMG parameters (median spectral frequency, root mean square, or amplitude), and the EMG parameters were not different in hyperthermia compared with control. Thus hyperthermia does not seem to affect the activation pattern of the muscles. Rather, the linear correlation among core temperature, EEG frequency index, and RPE indicates that alterations in cerebral activity may be associated with the hyperthermia-induced development of fatigue during prolonged exercise in hot environments.  相似文献   

15.
Creutzfeldt-Jakob disease is a rare, neurological, dementing disorder characterised by periodic sharp waves in the electroencephalogram (EEG). Non-linear analysis of these EEG changes may provide insight into the abnormal dynamics of cortical neural networks in this disorder. Babloyantz et al. have suggested that the periodic sharp waves reflect low-dimensional chaotic dynamics in the brain. In the present study this hypothesis was re-examined using newly developed techniques for non-linear time series analysis. We analysed the EEG of a patient with autopsy-proven Creutzfeldt-Jakob disease using the method of non-linear forecasting as introduced by Sugihara and May, and we tested for non-linearity with amplitude-adjusted, phase-randomised surrogate data. Two epochs with generalised periodic sharp waves showed clear evidence for non-linearity. These epochs could be predicted better and further ahead in time than most of the irregular background activity. Testing against cycle-randomised surrogate data and close inspection of the periodograms showed that the non-linearity of the periodic sharp waves may be better explained by quasi-periodicity than by low-dimensional chaos. The EEG further displayed at least one example of a sudden, large qualitative change in the dynamics, highly suggestive of a bifurcation. The presence of quasi-periodicity and bifurcations strongly argues for the use of a non-linear model to describe the EEG in Creutzfeldt-Jakob disease. Received: 28 October 1996 / Accepted in revised form: 8 July 1997  相似文献   

16.
Scalp-recorded electroencephalographic (EEG) signals produced by partial synchronization of cortical field activity mix locally synchronous electrical activities of many cortical areas. Analysis of event-related EEG signals typically assumes that poststimulus potentials emerge out of a flat baseline. Signals associated with a particular type of cognitive event are then assessed by averaging data from each scalp channel across trials, producing averaged event-related potentials (ERPs). ERP averaging, however, filters out much of the information about cortical dynamics available in the unaveraged data trials. Here, we studied the dynamics of cortical electrical activity while subjects detected and manually responded to visual targets, viewing signals retained in ERP averages not as responses of an otherwise silent system but as resulting from event-related alterations in ongoing EEG processes. We applied infomax independent component analysis to parse the dynamics of the unaveraged 31-channel EEG signals into maximally independent processes, then clustered the resulting processes across subjects by similarities in their scalp maps and activity power spectra, identifying nine classes of EEG processes with distinct spatial distributions and event-related dynamics. Coupled two-cycle postmotor theta bursts followed button presses in frontal midline and somatomotor clusters, while the broad postmotor "P300" positivity summed distinct contributions from several classes of frontal, parietal, and occipital processes. The observed event-related changes in local field activities, within and between cortical areas, may serve to modulate the strength of spike-based communication between cortical areas to update attention, expectancy, memory, and motor preparation during and after target recognition and speeded responding.  相似文献   

17.
The present study investigates the effects of a weak (+/-200 microT(pk)), pulsed, extremely low frequency magnetic field (ELF MF) upon the human electroencephalogram (EEG). We have previously determined that exposure to pulsed ELF MFs can affect the EEG, notably the alpha frequency (8-13 Hz) over the occipital-parietal region of the scalp. In the present study, subjects (n = 32) were exposed to two different pulsed MF sequences (1 and 2, used previously) that differed in presentation rate, in order to examine the effects upon the alpha frequency of the human EEG. Results suggest that compared to sham exposure, alpha activity was lowered over the occipital-parietal regions of the brain during exposure to Sequence 1, while alpha activity over the same regions was higher after Sequence 2 exposure. These effects occurred after approximately 5 min of pulsed MF exposure. The results also suggest that a previous exposure to the pulsed MF sequence determined subjects' responses in the present experiment. This study supports our previous observation of EEG changes after 5 min pulsed ELF MF exposure. The results of this study are also consistent with existing EEG experiments of ELF MF and mobile phone effects upon the brain.  相似文献   

18.
This study explores a model in which perceived control is affected by multiple sources of feedback at three different stages of the control sequence — person, response, and outcome. Behavior that enhances feedback is termedactivation, while behavior that diminishes feedback is termedinhibition. The study tests the hypothesis that activation at any stage of the sequence leads to greater perceived control than inhibition. Eighty subjects increased or decreased their brain-wave activity (EEG) by making a tone go either on or off, using either an active or a passive strategy. Following 10 60-second trials, subjects rated their perception of control over their EEG activity. The hypothesis that making a tone go on (activation of the outcome) leads to a greater perception of control than making the tone go off (inhibition of the outcome) was confirmed only when subjects decreased their EEG activity. Perceived control was not significantly correlated with actual control, supporting the expectation that they are separately mediated. The results did not support the hypothesis that increasing EEG activity or using an activity strategy would lead to a greater perception of control than decreasing EEG or using a passive strategy. These findings are interpreted as evidence that attention to feedback may be necessary for the predicted bias in perceived control to occur, and that activation and inhibition should be operationalized as the absolute presence versus absence of feedback in testing the hypothesis for the first two stages of control.This article is based on a dissertation submitted to Yale University in partial fulfillment of the requirements for the doctoral degree.  相似文献   

19.
The EEG mapping study tested age-related changes in power of EEG rhythms from delta to gamma ranges under healthy cognitive aging associated with preserved cognitive abilities and involvement in complex professional activity. 32 subjects of higher age group (HAG, mean age 65.1 +/- 1.18, 14 men and 18 women) and 33 subjects of lower age group (LAG mean age 22.1 +/- 0.38, 18 men and 15 women) participated in the study. Mean power of slow (delta, theta and alpha2) activity decreased and of fast activity (beta, gamma) increased as subject age increased. Compared to subjects of LAG subjects of HAG displayed a reduction in heterogeneity of EEG activity across recording sites. Centro-temporal gradients of power for frequency ranges from delta to beta2 and frontoparietal gradients and hemispheric asymmetry for alpha and beta1 rhythms were smoothed in subjects of HAG. These results suggest that observed age-related changes in baseline EEG may be the prerequisite for compensatory neural recruitment that may be associated as with allocation of more resources in cognitive processes so with reorganization of cortical networks including areas susceptible to physiological changes with aging.  相似文献   

20.
Multichannel EEG were recorded in young healthy subjects in two series of experiments during formation, actualization, and extinction of the visual unconscious set to the perception of unequal circles under conditions of increased motivation of subjects to the result of their performance. In the first series of experiments, subjects were promised to be rewarded (a small money price) for each correct response (the "general" rise of motivation). In the second series, subjects were promised to be rewarded for correct responses only in cases when one of the circles was larger than the other one (the "directed" rise of motivation). The dynamics of the EEG spectral power derived under these two conditions was compared with similar indices obtained earlier during formation of the same set without any special motivation of subjects (control). In all experimental conditions, before the presentation of the stimuli the EEG power in the alpha range was higher in subjects with the stable set. The dynamics of changes in the alpha power at set stages was principally similar in all conditions. In all the experimental conditions, in subjects with unstable set the EEG power in the delta range was highest at the stage of set actualization. The most pronounced generalized changes in the EEG power in the theta-range during the "general" rise of motivation in subjects with stable and unstable forms of set and greater variability of the reaction time to the probe stimulus suggest that the task performance under these conditions required greater tension than under conditions of the "directed" rise of motivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号