首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
alpha,beta-Unsaturated aldehydes are ubiquitous environmental pollutants, important industrial chemicals, have mani-fold biological functions in plants and insects and are natural products in food. They are endogenously formed in animals and humans during lipid peroxidation and arachidonic acid oxidation and are genotoxic, mutagenic and carcinogenic. Crotonaldehyde and 2-hexenal in food may contribute to general carcinogenicity in humans. The high bacterial toxicity of these compounds leads to problems in genotoxicity testing in bacterial systems. Recently, we have shown that using ethanol as solvent instead of dimethylsulfoxide (DMSO) results in an increase in the induction factors and the SOS-inducing potency of alpha,beta-unsaturated ketones in the SOS chromotest. Here, we demonstrate that utilization of ethanol as solvent also improves the testing of alpha,beta-unsaturated aldehydes. Five aldehydes out of nine tested were clearly positive in the SOS chromotest according to the criteria of Quillardet, i.e. acrolein, crotonaldehyde, 2,4-hexadienal, 2-methylacrolein and 2-ethylacrolein, three further, 2-hexenal, 2-heptenal and 2-propylacrolein showed a dose dependent increase of the induction factors which was however lower than 1.5 times that of the background. Only 2-butylacrolein did not lead to an increase in the induction factors. With DMSO as solvent only the three aldehydes acrolein, crotonaldehyde and 2,4-hexadienal showed an increase in the induction factor, which was however lower than 1.5 that of the background. Utilization of ethanol allows to establish structure genotoxicity relationships for alpha,beta-unsaturated aldehydes in the SOS chromotest. Genotoxicity decreases with increasing degree of substitution. The decreasing genotoxicities can be explained (a) by increasing bacterial toxicity due to increasing lipophilicities of the higher substituted aldehydes and (b) by decreasing reactivity due to steric hindrance by the alkyl substituents.  相似文献   

2.
3.
Prostaglandins of the A series have been reported to inhibit tumor cell growth and induce tumor cell differentiation by a yet unknown mechanism. We propose that these effects are due to the presence of a reactive alpha, beta-unsaturated carbonyl group (delta 10,11) in the cyclopentane ring of the PGA molecule. PGA was effective whereas PGB (sterically hindered alpha, beta-unsaturated carbonyl at delta 8, 12) and PGA conjugated to glutathione were ineffective. 15-Epi-PGA2 was as effective as PGA2 suggesting that the S absolute configuration of the 15-hydroxyl group is not essential. There was no correlation between generation of cAMP and inhibition of cell proliferation or induction of differentiation by various prostaglandins. The data suggest that PGA's and PGA-like compounds inhibit tumor cell growth and induce differentation because of the chemical reactivity of the alpha, beta-unsaturated carbonyl rather than hormonal activity of the prostanoid nucleus.  相似文献   

4.
alpha,beta-Unsaturated ketones are bifunctional compounds which form promutagenic 1,N(2)-propanodeoxyguanosine adducts like carcinogenic alpha,beta-unsaturated aldehydes and are mutagenic and genotoxic like these aldehydes. They are important industrial chemicals, are found in our environment and are widespread in our food. We investigated the SOS repair inducing activities of five ketones in the SOS chromotest and compared these results with that of the Ames test. Alkyl substitution at the beta-position of the alpha, beta-unsaturated carbonyl moiety leads to a decrease or loss in genotoxicity. Genotoxicity is higher if using ethanol as solvent instead of dimethylsulfoxide (DMSO). An increasing effect is also observed with methanol and n-propanol. Addition of the alcohol dehydrogenase inhibitor 4-methylpyrazole does not significantly influence the genotoxicity indicating that it is unlikely that the solvent effect depends on competitive inhibition of alcohol dehydrogenase by the alcohols used as solvents. Since other possible explanations e.g. ketal formation or solubility effects are also unlikely, the mechanism of this solvent effect observed with three different E. coli PQ-strains remains unresolved. No significant difference in genotoxicity of ethyl vinyl ketone was found between the strains PQ 37 and PQ 243 indicating that base excision repair does not play a role in the repair of 1,N(2)-propanodeoxyguanosine adducts, the main adducts of the alpha,beta-unsaturated ketones.  相似文献   

5.
6.
P1-zeta-crystallin (P1-ZCr) is an oxidative stress-induced NADPH:quinone oxidoreductase in Arabidopsis thaliana, but its physiological electron acceptors have not been identified. We found that recombinant P1-ZCr catalyzed the reduction of 2-alkenals of carbon chain C(3)-C(9) with NADPH. Among these 2-alkenals, the highest specificity was observed for 4-hydroxy-(2E)-nonenal (HNE), one of the major toxic products generated from lipid peroxides. (3Z)-Hexenal and aldehydes without alpha,beta-unsaturated bonds did not serve as electron acceptors. In the 2-alkenal molecules, P1-ZCr catalyzed the hydrogenation of alpha,beta-unsaturated bonds, but not the reduction of the aldehyde moiety, to produce saturated aldehydes, as determined by gas chromatography/mass spectrometry. We propose the enzyme name NADPH:2-alkenal alpha,beta-hydrogenase (ALH). A major portion of the NADPH-dependent HNE-reducing activity in A. thaliana leaves was inhibited by the specific antiserum against P1-ZCr, indicating that the endogenous P1-ZCr protein has ALH activity. Because expression of the P1-ZCr gene in A. thaliana is induced by oxidative stress treatments, we conclude that P1-ZCr functions as a defense against oxidative stress by scavenging the highly toxic, lipid peroxide-derived alpha,beta-unsaturated aldehydes.  相似文献   

7.
Regulation of alkane oxidation in Pseudomonas putida.   总被引:24,自引:16,他引:8       下载免费PDF全文
We have studied the appearance of whole-cell oxidizing activity for n-alkanes and their oxidation products in strains of Pseudomonas putida carrying the OCT plasmid. Our results indicate that the OCT plasmid codes for inducible alkane-hydroxylating and primary alcohol-dehydrogenating activities and that the chromosome codes for constitutive oxidizing activities for primary alcohols, aliphatic aldehydes, and fatty acids. Mutant isolation confirms the presence of an alcohol dehydrogenase locus on the OCT plasmid and indicated the presence of multiple alcohol and aldehyde dehydrogenase loci on the P. putida chromosome. Induction tests with various compounds indicate that inducer recognition has specificity for chain length and can be affected by the degree of oxidation of the carbon chain. Some inducers are neither growth nor respiration substrates. Growth tests with and without a gratuitous inducer indicate that undecane is not a growth substrate because it does not induce alkane hydroxylase activity. Using a growth test for determining induction of the plasmid alcohol dehydrogenase it is possible to show that heptane induces this activity in hydroxylase-negative mutants. This suggests that unoxidized alkane molecules are the physiological inducers of both plasmid activities.  相似文献   

8.
Enoate reductase or clostridia containing this enzyme (Clostridium tyrobutyricum or C. kluyveri) catalyse the reduction of alpha,beta-unsaturated aldehydes (enals). The enantiomeric purity of the saturated aldehydes obtained from alpha-substituted enals is usually rather low and depends heavily on the reaction conditions. The reduction of the corresponding allyl alcohols to the saturated alcohols leads to much higher enantiomeric purities, though the reduction of the enal corresponding to the allyl alcohol to the saturated aldehyde is an intermediary step in the reaction sequence allyl alcohol----saturated alcohol. The explanation seems to be the racemisation of saturated aldehydes caused by enoate reductase. This is illustrated by the reduction of (E)-2-methylcinnamyl aldehyde to (R)-2-methyl-3-phenylpropanal or (R)-2-methyl-3-phenylpropanol under different conditions and measuring the racemisation of the aldehyde as well as the hydrogen-deuterium exchange of 3-phenylpropanal. In contrast to saturated carboxylates saturated aldehydes can be dehydrogenated to alpha,beta-unsaturated aldehydes (enals) by enoate reductase in the presence of electron acceptors such as oxygen or dichlorophenol indophenol. Under these conditions enoate reductase shows in the presence of oxygen a surprisingly high half life (greater than 20 h) as compared to that which is observed when the enzyme was used as a reductase with NADH in the presence of oxygen. In this case the enzyme is inactivated within a few minutes.  相似文献   

9.
DNA damage caused by lipid peroxidation products   总被引:5,自引:0,他引:5  
Lipid peroxidation is a process involving the oxidation of polyunsaturated fatty acids (PUFAs), which are basic components of biological membranes. Reactive electrophilic compounds are formed during lipid peroxidation, mainly alpha, beta-unsaturated aldehydes. These compounds yield a number of adducts with DNA. Among them, propeno and substituted propano adducts of deoxyguanosine with malondialdehyde (MDA), acrolein, crotonaldehyde and etheno adducts, resulting from the reactions of DNA bases with epoxy aldehydes, are a very important group of adducts. The epoxy aldehydes are more reactive towards DNA than the parent unsaturated aldehydes. The compounds resulting from lipid peroxidation mostly react with DNA showing both genotoxic and mutagenic action; among them, 4-hydroxynonenal is the most genotoxic, while MDA is the most mutagenic. DNA damage caused by the adducts of lipid peroxidation products with DNA can be removed by the repairing action of glycosylases. The formed adducts have been hitherto analyzed using the IPPA (Imunopurification-(32)P-postlabelling assay) method and via gas chromatography/electron capture negtive chemical ionization/mass spectrometry (GC/EC NCI/MS). A combination of liquid chromatography with electrospray tandem mass spectrometry (LC/ES-MSMS) with labelled inner standard has mainly been used in recent years.  相似文献   

10.
Physical damage and disease are known to lead to changes in the oxylipin signature of plants. We searched for oxylipins produced in response to both wounding and pathogenesis in Arabidopsis leaves. Linoleic acid 9- and 13-ketodienes (KODEs) were found to accumulate in wounded leaves as well as in leaves infected with the pathogen Pseudomonas syringae pv. tomato (Pst). Quantification of the compounds showed that they accumulated to higher levels during the hypersensitive response to Pst avrRpm1 than during infection with a Pst strain lacking an avirulence gene. KODEs are Michael addition acceptors, containing a chemically reactive alpha,beta-unsaturated carbonyl group. When infiltrated into leaves, KODEs were found to induce expression of the GST1 gene, but vital staining indicated that these compounds also damaged plant cells. Several molecules typical of lipid oxidation, including malonaldehyde, also contain the alpha,beta-unsaturated carbonyl reactivity feature, and, when delivered in a volatile form, powerfully induced the expression of GST1. The results draw attention to the potential physiological importance of naturally occurring Michael addition acceptors in plants. In particular, these compounds could act directly, or indirectly via cell damage, as powerful gene activators and might also contribute to host cell death.  相似文献   

11.
李小珍  刘映红 《昆虫学报》2007,50(10):989-995
昆虫解毒酶是一类异质酶系, 对分解大量的内源或外源有毒物质、维持正常生理代谢起着重要作用。本文采用生物化学的方法测定了5种寄主果实对南亚果实蝇Bactrocera tau Walker 3个虫态体内总蛋白含量和5种解毒酶的活力。双因子方差分析显示, 南亚果实蝇种群取食黄瓜Cucumis sativus L.、南瓜Cucurbita moschala L.、丝瓜Luffa cylindrical L.、冬瓜Benincasa hispida (Thunb.) Coqn.和苦瓜Momordica charantia L.后, 体内蛋白含量和解毒酶活性均存在显著差异。以丝瓜为食料时, 南亚果实蝇体内蛋白含量较高; 而以黄瓜和冬瓜为食料时蛋白含量则相对较低。在以上5种寄主果实间, 南亚果实蝇的羧酸酯酶(CarE)活性在黄瓜和南瓜上较高, 细胞色素P450 O-脱甲基和谷胱甘肽S-转移酶(GST)活性在苦瓜上较高, 酸性磷酸酯酶(ACP)和碱性磷酸酯酶(ALP)活性却分别在黄瓜和南瓜上较低。在幼虫、蛹和成虫3个虫态间, 解毒酶活性亦存在显著差异, 成虫具有较高的CarE活性;幼虫具有较高的细胞色素P450 O-脱甲基, GST和ALP活性,但具有较低的ACP活性;除ACP外,蛹期解毒酶活性均较低。据以上结果可以推测,南亚果实蝇解毒酶活力受寄主果实种类以及该种群本身发育阶段的影响。  相似文献   

12.
Studies on the uptake of several organic xenobiotics and on their subsequent conjugation to biomolecules have been performed to elucidate the use of reed plants in phytoremediation of polluted water. Phragmites australis plants were able to accumulate organic xenobiotics in their rhizomes. The uptake was correlated to the logKOW and pKa of the xenobiotics and highest with compounds exhibiting logKOWs between 1 and 3. Detoxification of xenobiotics was demonstrated when the activity of glutathione S-transferase was determined in plants from various treatment sites. Enzyme activities were strongly dependent on the provenience of the plant and the history of the stand. Detoxification enzymes were also inducible. Naphthylic acetic acid (NAA), 2,4-dichlorophenol and BION were tested as potential inducers. BION was able to induce the GST activity 5-fold, albeit only for a short period of hours. The mechanism of induction and the flexibility of the detoxification system of certain ecotypes of reed toward stress or the pollution level will require further investigation.  相似文献   

13.
Induction of pumpkin (Cucurbita maxima Duch.) glutathione S-transferases (GSTs) by different stresses and endogenous trans-2-hexenal content were determined in search of a common signal for GST induction. All of the stresses showed significant induction, As2O3 causing the highest induction followed by trans-2-hexenal. The trans-2-hexenal content was highest in trans-2-hexenal-treated seedlings and next-highest in methyl jasmonate-treated seedlings, whereas high temperature- and As2O3-treated seedlings had trans-2-hexenal contents lower than that of control seedlings. Induction of GST, lipoxygenase (LOX) and hydroperoxide lyase (HPL) was compared, since trans-2-hexenal and methyl jasmonate are the products of the LOX pathway. All four stresses showed weak LOX induction, high temperature causing the highest induction. However, only methyl jasmonate caused weak HPL induction. Both antioxidants or oxidants induced GST to different degrees. Glutathione contents of reduced glutathione (GSH) or oxidized glutathione (GSSG)-treated seedlings were significantly higher than the content of control seedlings, whereas those treated with other antioxidants or oxidants had contents similar to or less than control seedlings. The GSH:GSSG ratio was lowest in GSSG-treated seedlings and next-lowest in GSH-treated seedlings. The results of this study suggest that pumpkin GSTs are not induced through a common signalling pathway and that redox perturbation plays a role in pumpkin GST induction.  相似文献   

14.
Reactive alpha,beta-unsaturated aldehydes are major components of common environmental pollutants and are products of lipid oxidation. Although these aldehydes have been demonstrated to induce apoptotic cell death in various cell types, we recently observed that the alpha,beta-unsaturated aldehyde acrolein (ACR) can inhibit constitutive apoptosis of polymorphonuclear neutrophils and thus potentially contribute to chronic inflammation. The present study was designed to investigate the biochemical mechanisms by which two representative alpha,beta-unsaturated aldehydes, ACR and 4-hydroxynonenal (HNE), regulate neutrophil apoptosis. Whereas low concentrations of either aldehyde (<10 microM) mildly promoted apoptosis in neutrophils (reflected by increased phosphatidylserine exposure, caspase-3 activation, and mitochondrial cytochrome c release), higher concentrations prevented critical features of apoptosis (caspase-3 activation, phosphatidylserine exposure) and caused delayed neutrophil cell death with characteristics of necrosis/oncosis. Inhibition of caspase-3 activation by either aldehyde occurred despite increases in mitochondrial cytochrome c release and occurred in close association with depletion of cellular GSH and with cysteine modifications within caspase-3. However, procaspase-3 processing was also prevented, because of inhibited activation of caspases-9 and -8 under similar conditions, suggesting that ACR (and to a lesser extent HNE) can inhibit both intrinsic (mitochondria dependent) and extrinsic mechanisms of neutrophil apoptosis at initial stages. Collectively, our results indicate that alpha,beta-unsaturated aldehydes can inhibit constitutive neutrophil apoptosis by common mechanisms, involving changes in cellular GSH status resulting in reduced activation of initiator caspases as well as inactivation of caspase-3 by modification of its critical cysteine residue.  相似文献   

15.
16.
Biological interactions of alpha,beta-unsaturated aldehydes   总被引:5,自引:0,他引:5  
This article describes the chemical nature of alpha,beta-unsaturated aldehydes and some of their toxicological effects based on their ability to function as direct-acting alkylating agents. Selected compounds discussed include alpha,beta-unsaturated aldehydic environmental pollutants, metabolites of xenobiotics and natural products, and lipid peroxidation--and DNA oxidation products derived from cellular constituents. Briefly reviewed are sources and mechanisms of formation of the aldehydes, their reactivity with respect to glutathione and amino-groups, their toxicity based on interaction with sulfhydryl and amino targets in cells, and modulation of their toxicity by metabolism.  相似文献   

17.
Antiepileptic therapy with a broad spectrum drug felbamate (FBM) has been limited due to reports of hepatotoxicity and aplastic anemia associated with its use. It was proposed that a bioactivation of FBM leading to formation of alpha,beta-unsaturated aldehyde, atropaldehyde (ATPAL) could be responsible for toxicities associated with the parent drug. Other members of this class of compounds, acrolein and 4-hydroxynonenal (HNE), are known for their reactivity and toxicity. It has been proposed that the bioactivation of FBM to ATPAL proceeds though a more stable cyclized product, 4-hydroxy-5-phenyltetrahydro-1,3-oxazin-2-one (CCMF) whose formation has been shown recently. Aldehyde dehydrogenase (ALDH) and glutathione transferase (GST) are detoxifying enzymes and targets for reactive aldehydes. This study examined effects of ATPAL and its precursor, CCMF on ALDH, GST and cell viability in liver, the target tissue for its metabolism and toxicity. A known toxin, HNE, which is also a substrate for ALDH and GST, was used for comparison. Interspecies difference in metabolism of FBM is well documented, therefore, human tissue was deemed most relevant and used for these studies. ATPAL inhibited ALDH and GST activities and led to a loss of hepatocyte viability. Several fold greater concentrations of CCMF were necessary to demonstrate a similar degree of ALDH inhibition or cytotoxicity as observed with ATPAL. This is consistent with CCMF requiring prior conversion to the more proximate toxin, ATPAL. GSH was shown to protect against ALDH inhibition by ATPAL. In this context, ALDH and GST are detoxifying pathways and their inhibition would lead to an accumulation of reactive species from FBM metabolism and/or metabolism of other endogenous or exogenous compounds and predisposing to or causing toxicity. Therefore, mechanisms of reactive aldehydes toxicity could include direct interaction with critical cellular macromolecules or indirect interference with cellular detoxification mechanisms.  相似文献   

18.
19.
Acrolein is a highly electrophilic alpha,beta-unsaturated aldehydes to which humans are exposed in a variety of environment situations and is also a product of lipid peroxidation. Increased levels of unsaturated aldehydes play an important role in the pathogenesis of a number of human diseases such as Alzheimer's disease, atherosclerosis and diabetes. A number of studies have reported that acrolein evokes downstream signaling via an elevation in cellular oxidative stress. Here, we report that low concentrations of acrolein induce Hsp72 in human umbilical vein endothelial cells (HUVEC) and that both the PKCdelta/JNK pathway and calcium pathway were involved in the induction. The findings confirm that the production of reactive oxygen species (ROS) is not directly involved in the pathway. The induction of Hsp72 was not observed in other cells such as smooth muscle cells (SMC) or COS-1 cells. The results suggest that HUVEC have a unique defense system against cell damage by acrolein in which Hsp72 is induced via activation of both the PKCd/JNK and the calcium pathway.  相似文献   

20.
Addition of saturated and alpha, beta-unsaturated aliphatic aldehydes (C8 to C11) significantly increased NADPH oxidation with mouse hepatic microsomes, and the aldehydes themselves were oxidized to the corresponding carboxylic acids. When these aldehyde substrates were incubated similarly under oxygen-18 gas and the carboxylic acids formed were analyzed by GC-MS after methylation, it was indicated that oxygen-18 was significantly incorporated into the carboxylic acids formed from alpha, beta-unsaturated aldehydes, but not significantly into the carboxylic acids formed from saturated aldehydes. These results indicate that enzyme and/or mechanism responsible for the oxidation of these two types of aldehydes is different from each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号