首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 149 毫秒
1.
2.
3.
The genes encoding alkaline phosphatase (phoA) and the inducible inorganic phosphate transport system Pst (pstS,C,A,B,U) belong to the PHO regulon. Mutants of Escherichia coli lacking the global regulatory protein integration host factor (IHF) show an increased level of alkaline phosphatase and a decreased level of Pst. IHF binds weakly but specifically to a DNA fragment containing the promoter region of the pst operon but does not bind to a fragment that includes the promoter region of phoA. It is proposed that IHF is a positive regulator of the pst operon and as such controls indirectly the expression of phoA. Received: 4 May 1998 / Accepted: 19 August 1998  相似文献   

4.
5.
The organization of the phosphate-specific transport (pst) operon inPseudomonas aeruginosa has been determined. The gene order of thepst operon ispstC, pstA, pstB, phoU, and a well-conserved Pho box sequence (16/18 bases identical) exists in the promoter region. The most striking difference from the knownEscherichia coli pst operon is the lack of thepstS gene encoding a periplasmic phosphate (Pi)-binding protein. Even though the threepst genes were absolutely required for Pi-specific transport, expression of thepst operon at high levels did not increase Pi uptake inP. aeruginosa. DNA sequences for thepstB andphoU genes have been determined previously. The newly identifiedpstC andpstA genes encode possible integral membrane proteins of 677 amino acids (M r 73 844) and 513 amino acids (M r 56 394), respectively. The amino acid sequences of PstC and PstA predict that these proteins contain a long hydrophilic domain not seen in theirE. coli counterparts. A chromosomal deletion of the entirepst operon renderedP. aeruginosa unable to repress Pi taxis under conditions of Pi excess. ThephoU andpstB genes are essential for repressing Pi taxis. However, mutants lacking either PstC or PstA alone were able to repress Pi taxis under conditions of Pi excess.  相似文献   

6.
7.
To acquire phosphorus, cyanobacteria use the typical bacterial ABC-type phosphate transporter, which is composed of a periplasmic high-affinity phosphate-binding protein PstS and a channel formed by two transmembrane proteins PstC and PstA. A putative pstS gene was identified in the genomes of cyanophages that infect the unicellular marine cyanobacteria Prochlorococcus and Synechococcus. However, it has not been determined whether the cyanophage PstS protein is functional during infection to enhance the phosphate uptake rate of host cells. Here we showed that the cyanophage P-SSM2 PstS protein was abundant in the infected Prochlorococcus NATL2A cells and the host phosphate uptake rate was enhanced after infection. This is consistent with our biochemical and structural analyses showing that the phage PstS protein is indeed a high-affinity phosphate-binding protein. We further modelled the complex structure of phage PstS with host PstCA and revealed three putative interfaces that may facilitate the formation of a chimeric ABC transporter. Our results provide insights into the molecular mechanism by which cyanophages enhance the phosphate uptake rate of cyanobacteria. Phosphate acquisition by infected bacteria can increase the phosphorus contents of released cellular debris and virus particles, which together constitute a significant proportion of the marine dissolved organic phosphorus pool.  相似文献   

8.
9.
孙明珠  潘珊珊  王迪  宫正  谢明杰 《微生物学报》2020,60(11):2582-2592
[目的] 研究染料木素对耐甲氧西林金黄色葡萄球菌(MRSA)外排蛋白的影响。[方法] 通过联合药敏实验检测染料木素影响MRSA对环丙沙星的敏感性;利用等重同位素多标签相对定量蛋白质组学(iTRAQ)技术,检测染料木素作用MRSA41577后菌体蛋白表达量的变化;通过生物信息学方法对差异显著的蛋白进行系统分析;通过qPCR和尼罗红外排实验,探讨耐药相关的蛋白介导细菌耐药的作用机制。[结果] 联合药敏实验结果显示,染料木素能增强MRSA对环丙沙星的敏感性;通过iTRAQ技术检测到差异显著蛋白共有129个,包括60个表达上调的蛋白和69个表达下调的蛋白;生物信息学分析结果显示,与细菌耐药相关的蛋白约有14个,其中,通过主动外排系统介导细菌耐药的蛋白主要有PstB、PstS等;qPCR结果显示,与对照组相比,PstB、PstS的基因表达量分别下降了51.6%和78.6%;尼罗红外排实验结果显示,染料木素与尼罗红之间存在竞争关系,为MRSA41577的竞争性抑制剂。[结论] 染料木素可通过降低MRSA41577外排基因pstBpstS的mRNA表达量,进而影响PstB、PstS外排蛋白的表达来逆转细菌耐药;此外,染料木素还是MRSA41577的竞争性外排抑制剂,可通过与底物竞争外排的方式,使抗菌药物留在菌体内发挥抗菌作用。  相似文献   

10.
Summary The pstS gene belongs to the phosphate regulon whose expression is induced by phosphate starvation and regulated positively by the PhoB protein. The phosphate (pho) box is a consensus sequence shared by the regulatory regions of the genes in the pho regulon. We constructed two series of deletion mutations in a plasmid in vitro, with upstream and downstream deletions in the promoter region of pstS, which contains two pho boxes in tandem, and studied their promoter activity by connecting them with a promoterless gene for chloramphenicol acetyltransferase. Deletions extending into the upstream pho box but retaining the downstream pho box greatly reduced promoter activity, but the remaining activity was still regulated by phosphate levels in the medium and by the PhoB protein, indicating that each pho box is functional. No activity was observed in deletion mutants which lacked the remaining pho box or the-10 region. Therefore, the pstS promoter was defined to include the two pho boxes and the-10 region. The PhoB protein binding region in the pstS regulatory region was studied with the deletion plasmids by a gelmobility retardation assay. The results suggest the protein binds to each pho box on the pstS promoter. A phoB deletion mutant was constructed, and we demonstrated that expression of pstS was strictly dependent on the function of the PhoB protein.  相似文献   

11.
12.
13.
Phosphate is an ion that is essential for fungal growth. The systems for inorganic phosphate (Pi) acquisition in eukaryotic cells (PHO) have been characterized as a low-affinity (that assures a supply of Pi at normal or high external Pi concentrations) and a high-affinity (activated in response to Pi starvation). Here, as an initial step to understand the PHO pathway in Aspergillus fumigatus, we characterized the PHO80 homologue, PhoBPHO80. We show that the ΔphoBPHO80 mutant has a polar growth defect (i.e., a delayed germ tube emergence) and, by phenotypic and phosphate uptake analyses, establish a link between PhoBPHO80, calcineurin and calcium metabolism. Microarray hybridizations carried out with RNA obtained from wild-type and ΔphoBPHO80 mutant cells identify Afu4g03610 (phoDPHO84), Afu7g06350 (phoEPHO89), Afu4g06020 (phoCPHO81), and Afu2g09040 (vacuolar transporter Vtc4) as more expressed both in the ΔphoBPHO80 mutant background and under phosphate-limiting conditions of 0.1 mM Pi. Epifluorescence microscopy revealed accumulation of poly-phosphate in ΔphoBPHO80 vacuoles, which was independent of extracellular phosphate concentration. Surprisingly, a phoDPHO84 deletion mutant is indistinguishable phenotypically from the corresponding wild-type strain. mRNA analyses suggest that protein kinase A absence supports the expression of PHO genes in A. fumigatus. Furthermore, ΔphoBPHO80 and ΔphoDPHO84 mutant are fully virulent in a murine low dose model for invasive aspergillosis.  相似文献   

14.
PstS and DING proteins are members of a superfamily of secreted, high‐affinity phosphate‐binding proteins. Whereas microbial PstS have a well‐defined role in phosphate ABC transporters, the physiological function of DING proteins, named after their DINGGG N termini, still needs to be determined. PstS and DING proteins co‐exist in some Pseudomonas strains, to which they confer a highly adhesive and virulent phenotype. More than 30 DING proteins have now been purified, mostly from eukaryotes. They are often associated with infections or with dysregulation of cell proliferation. Consequently, eukaryotic DING proteins could also be involved in cell–cell communication or adherence. The ubiquitous presence in eukaryotes of proteins structurally and functionally related to bacterial virulence factors is intriguing, as is the absence of eukaryotic genes encoding DING proteins in databases. DING proteins in eukaryotes could originate from unidentified commensal or symbiotic bacteria and could contribute to essential functions. Alternatively, DING proteins could be encoded by eukaryotic genes sharing special features that prevent their cloning. Both hypotheses are discussed.  相似文献   

15.
16.
17.
18.
Mycobacterium tuberculosis evades host immune responses by colonizing macrophages. Intraphagosomal M. tuberculosis is exposed to environmental stresses such as reactive oxygen and nitrogen intermediates as well as acid shock and inorganic phosphate (Pi) depletion. Experimental evidence suggests that expression levels of mycobacterial protein PstS3 (Rv0928) are significantly increased when M. tuberculosis bacilli are exposed to Pi starvation. Hence, PstS3 may be important for survival of Mtb in conditions where there is limited supply of Pi. We report here the structure of PstS3 from M. tuberculosis at 2.3‐Å resolution. The protein presents a structure typical for ABC phosphate transfer receptors. Comparison with its cognate receptor PstS1 showed a different pattern distribution of surface charges in proximity to the Pi recognition site, suggesting complementary roles of the two proteins in Pi uptake. Proteins 2014; 82:2268–2274. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
20.
Cyanophages encode host-derived genes that may increase their fitness. We examined the relative abundance of 18 host-derived cyanophages genes in metagenomes and viromes along depth profiles from the Eastern Tropical North Pacific Oxygen Deficient Zone (ETNP ODZ) where Prochlorococcus dominates a secondary chlorophyll maximum within the ODZ. Cyanophages at the oxic primary chlorophyll maximum encoded genes related to light and phosphate stress (psbA, psbD and pstS in T4-like and psbA in T7-like), but the proportion of cyanophage with these genes decreased with depth. The proportion of cyanophage with purine biosynthesis genes increased with depth in T4-like, but not T7-like cyanophages. No additional host-derived genes were found in deep T7-like cyanophages, suggesting that T4-like and T7-like cyanophages have different host-derived gene acquisition strategies, possibly linked to their different genome packaging mechanisms. In contrast to the ETNP, in the oxic North Atlantic T4-like cyanophages encoded psbA and pstS throughout the euphotic zone. Differences in pstS between the ETNP and the North Atlantic stations were consistent with differences in phosphate concentrations in those regimes. We suggest that the low proportion of cyanophage with psbA within the ODZ reflects the stably stratified low-light conditions occupied by their hosts, a Prochlorococcus ecotype endemic to ODZs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号