首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The incorporation of histone variants into nucleosomes represents one way of altering the chromatin structure to accommodate diverse functions. Histone variant H2A.Z has specific roles in gene regulation, heterochromatin boundary formation, and genomic integrity. The precise features required for H2A.Z to function and specify an identity different from canonical H2A remain to be fully explored. Analysis of the C-terminal docking domain of H2A.Z in Saccharomyces cerevisiae using epistatic miniarray profile (E-MAP) uncovered nuanced requirements of the H2A.Z C-terminal region for cell growth when additional genes were compromised. Moreover, the H2A.Z(1-114) truncation, lacking the last 20 amino acids of the protein, did not support regular H2A.Z functions, such as resistance to genotoxic stress, restriction of heterochromatin in its native context, GAL1 gene activation, and chromatin anchoring. The corresponding region of H2A could fully rescue the strong defects caused by loss of this functionally essential region in the C terminus of H2A.Z. Despite the dramatic reduction in function, the H2A.Z(1-114) truncation still bound the H2A.Z deposition complex SWR1-C, the histone chaperone Chz1, and histone H2B. These data are consistent with a model in which retaining the variant in chromatin after its deposition by SWR1-C is a crucial determinant of its function.  相似文献   

3.
4.
Histone H2A variants generate diversity in chromatin structure and functions, as nucleosomes containing variant H2A histones have altered physical, chemical, and biological properties. H2A.Z is an evolutionarily ancient and highly conserved H2A variant that regulates processes ranging from gene expression to the DNA damage response. Here we find that the unstructured portion of the C-terminal tail of H2A.Z is required for the normal functions of this histone variant in budding yeast. We have also identified a novel splice isoform of the human H2A.Z-2 gene that encodes a C-terminally truncated H2A.Z protein that is similar to the truncation mutants we identified in yeast. The short forms of H2A.Z in both yeast and human cells are more loosely associated with chromatin than the full-length proteins, indicating a conserved function for the H2A.Z C-terminal tail in regulating the association of H2A.Z with nucleosomes.  相似文献   

5.
Saccharomyces cerevisiae contains three genes that encode members of the histone H2A gene family. The last of these to be discovered, HTZ1 (also known as HTA3), encodes a member of the highly conserved H2A.Z class of histones. Little is known about how its in vivo function compares with that of the better studied genes (HTA1 and HTA2) encoding the two major H2As. We show here that, while the HTZ1 gene encoding H2A.Z is not essential in budding yeast, its disruption results in slow growth and formamide sensitivity. Using plasmid shuffle experiments, we show that the major H2A genes cannot provide the function of HTZ1 and the HTZ1 gene cannot provide the essential function of the genes encoding the major H2As. We also demonstrate for the first time that H2A.Z genes are functionally conserved by showing that the gene encoding the H2A.Z variant of the ciliated protozoan TETRAHYMENA: thermophila is able to rescue the phenotypes associated with disruption of the yeast HTZ1 gene. Thus, the functions of H2A.Z are distinct from those of the major H2As and are highly conserved.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号