首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 232 毫秒
1.
研究了一氧化氮(NO)供体硝普钠(SNP)、一氧化氮清除剂c-PTIO和一氧化氮合酶(NOS)抑制剂L-NAME对绿豆(Vigna radiata L.)下胚轴插条生根的影响,并对不定根发生期间插条基部NO和NADPH-黄递酶的时空变化进行了检测。所试浓度SNP均明显促进下胚轴不定根发生。分别在插条切取后24 h和36 h于其基部维管束之间检测到NADPH-黄递酶(NOS标记酶)阳性反应和NO荧光,根原基也于48 h在相同位置出现,并于60 h进一步伸长。48-60h期间,NADPH-黄递酶的阳性反应及NO荧光有增强趋势,并主要分布在不定根分生组织中。L-NAME既减弱NADPH-黄递酶的阳性反应和NO荧光,也延缓不定根发生;而c-PTIO对NO荧光及不定根发生均有抑制作用。上述结果证明:NO在不定根发生及发育过程中有重要作用,而且此过程中的NO很可能由类似的NOS催化产生。  相似文献   

2.
硝普钠(SNP)对绿豆下胚轴插条生根的影响   总被引:2,自引:0,他引:2  
黄爱霞  佘小平 《西北植物学报》2003,23(12):2196-2199
研究了SNP对绿豆下胚轴插条生根的影响.结果表明,SNP促进下胚轴插条生根的最适浓度和最佳时间分别为300μmol*L-1和24 h,最适浓度SNP对6 d龄幼苗下胚轴插条生根促进效果最好,对下胚轴插条的生根促进效应显著大于其余插条.同时就SNP、IBA和NAA对不定根发生的影响进行了比较研究.  相似文献   

3.
以10-4 mol/L脱落酸(ABA)处理绿豆种子24 h,在幼苗下胚轴长6 cm时,切除根部作为插条,研究ABA对插条不定根发生及插条基部细胞周期时相的影响。结果表明,ABA可促进下胚轴插条不定根发生,增加生根数和生根范围;ABA提高插条基部细胞色氨酸转氨酶、吲哚丙酮酸脱羧酶和吲哚乙醛脱氢酶的比活性,增加吲哚乙酸含量,同时进入细胞周期S期的基部细胞数目增加,促进DNA合成,有利于不定根的发生。  相似文献   

4.
【摘要】通过室内盆栽试验, 研究了40 mg·kg-1 Cd(CdCl2·2.5 H2O)胁迫下, 不同浓度乙二胺二琥珀酸(EDDS)(0、0.5、1.5、2.5、5.0 mmol·L-1)单施及EDDS与一氧化氮(NO)供体硝普钠(SNP)(0、0.25、0.5、1.0 mmol·L-1)联合施加对三叶鬼针草(Bidens pilosa L.)幼苗应激信号分子NO产生量和一氧化氮合酶(NOS)活性的影响。结果表明: 单施EDDS, 植株不同部位NO生成量随EDDS浓度的升高呈增加趋势, 5.0 mmol·L-1时达到最大; 0.5 mmol·L-1的EDDS可增强根、叶中NOS活性。在探究NO产生较多和NOS活性增强显著的EDDS处理浓度与SNP联合施加的研究中发现, 随SNP浓度的升高, 根中NO生成量先升高后降低, 茎和叶中持续升高; 适宜浓度的SNP可进一步增强植株体内NOS活性。EDDS诱导NO的生成会被硝酸还原酶(NR)抑制剂(NaN3)和NOS抑制剂(L-NAME)抑制, 对EDDS处理下NOS活性影响较小。NO清除剂(c-PTIO)能有效清除部分NO, 增强根和叶中NOS活性。因此, 在Cd胁迫下, 适宜浓度的EDDS单施及与SNP联合施加都会增加三叶鬼针草幼苗体内NO产生量。  相似文献   

5.
研究正弦波电磁场(SEMF)促进成骨细胞成熟矿化是否与一氧化氮(NO)信号通路相关.首先检测成骨细胞经正弦电磁场作用0h、0.5h、1h、1.5h、2h、2.5h、3h、3.5h和4h后一氧化氮合酶(NOS)的活性,以探明电磁场是否影响NO的合成;其次,在细胞培养液中加入NOS的阻断剂L-NAME以阻断NO信号通路,观察电磁场促进骨形成作用是否受到影响.结果发现,经正弦波电磁场处理后,NOS活性升高,在0.5h达到峰值,与空白对照组差异极显著(P<0.01),Osterix基因的表达量、碱性磷酸酶活性和钙化结节数等均显著高于对照组.L-NAME组各项指标均低于空白对照组,SEMF+L-NAME组则略高于空白对照组而低于SEMF组.以上结果表明SEMF促进成骨细胞成熟矿化过程中NO信号通路被激活,如该通路被抑制,则SEMF的促成骨作用被抵消.  相似文献   

6.
大豆甙元磺酸钠对应激性胃粘膜损伤的影响及其机制探讨   总被引:2,自引:0,他引:2  
目的:观察大豆甙元磺酸钠对力竭应激性渍疡的影响,探讨其可能的作用途径。方法:采用小鼠力竭性游泳,计数胃部溃疡点数建立应激溃疡模型,腹腔注射不同剂量的大豆甙元磺酸钠及一氧化氮合酶(NOS)抑制剂(L-NAME)并通过NADPH-黄递酶组织化学法检测胃壁NOS阳性神经元的变化。结果:大豆甙元磺酸钠具有保护胃粘膜的作用,且呈剂量效应;L-NAME可防止应激引起的胃粘膜损伤,L-NAME与有效剂量的大豆甙元磺酸钠联合使用后,大豆甙元磺酸钠对胃粘膜的保护作用明显增强;正常及应激小鼠胃壁NOS神经节数目基本不变,大豆甙元磺酸钠对正常小鼠胃壁NOS神经元影响不明显,而对应激小鼠胃壁单位面积及单个神经节内NOS阳性神经元数目均有显著降低作用。结论:应激时NO升高可导致溃疡,大豆甙元磺酸钠能够保护胃粘膜,其作用是通过抑制应激状态下NOS的升高,限制应激状态下NO过度升高,起到保护胃粘膜的作用。  相似文献   

7.
以黄瓜品种‘新春4号’为材料,研究干旱胁迫下一氧化氮(NO)和钙离子(Ca2+)处理下黄瓜的生根指标、内源Ca2+荧光强度以及抗氧化酶(超氧化物歧化酶SOD、过氧化氢酶CAT、抗坏血酸过氧化物酶APX)活性,分析干旱条件下黄瓜不定根发生过程中NO和Ca2+之间的关系.结果表明: 200 μmol·L-1 氯化钙(CaCl2)和0.05%聚乙二醇(PEG)共处理显著提高了干旱条件下黄瓜不定根的根长和根数;添加Ca2+螯合剂(EGTA)和通道抑制剂(BAPTA/AM)处理显著降低了干旱条件下NO诱导的不定根根数和根长.干旱条件下,NO和CaCl2处理提高了黄瓜下胚轴内源Ca2+荧光强度;而NO清除剂(cPTIO)处理的Ca2+荧光强度显著低于NO处理.干旱条件下,NO和CaCl2处理显著提高了黄瓜下胚轴抗氧化酶活性;而Ca2+抑制剂或螯合剂处理显著降低了NO诱导的抗氧化酶活性.由此可见,干旱条件下Ca2+参与了NO调控黄瓜抗氧化酶活性,缓解了干旱胁迫对不定根形成产生的伤害,进而促进了不定根的发生.  相似文献   

8.
以"陇春27"号水培小麦幼苗为研究材料,外源添加水杨酸(SA)、一氧化氮(NO)清除剂(carboxy-PTIO,c-PTIO)、NO供体硝普钠(SNP)、硝酸还原酶(NR)抑制剂钨酸盐(Tungstate)及NO合成酶(NOS)抑制剂(L-NAME)进行不同预处理,分析其在镉(Cd)胁迫下根的生长和叶片叶绿素含量的变化,探讨SA和NO互作对小麦幼苗Cd胁迫的缓解机制。结果表明:随着Cd处理时间的延长,小麦幼苗根中SA含量显著降低,NO含量则呈现先增加(6 h和12 h)后减少(24 h和48 h)的趋势;Cd胁迫抑制了小麦幼苗根的生长,减少了叶片叶绿素的含量,而一定浓度的SA或SNP预处理可以缓解Cd胁迫对小麦幼苗根长的抑制作用,增加叶绿素的含量。c-PTIO、L-NAME和Tungstate单独预处理显著抑制了小麦幼苗根的生长,减少了NO的含量,但不影响叶绿素含量。SA400+L-NAME预处理可以缓解Cd胁迫对小麦幼苗根长的抑制作用以及叶绿素和NO含量的减少作用;SA400+c-PTIO或SA400+Tungstate预处理可增加Cd胁迫下叶绿素的含量,但对根的伸长无影响。进一步研究发现,Cd胁迫抑制了NR的活性,而SA400预处理可以使Cd胁迫下NR的活性增强,不同处理对NOS的活性均无影响。综上所述,Cd胁迫导致小麦幼苗根内源SA含量降低和NO含量先升高再降低;外源添加SA或SNP预处理缓解了Cd胁迫对根生长的抑制和叶绿素含量降低的作用;外源SA通过影响NO的产生从而提高小麦幼苗对Cd胁迫的耐受性,最终缓解了Cd对小麦幼苗的毒害作用。  相似文献   

9.
目的:探讨脑缺血/再灌注损伤中脑组织一氧化氮和一氧化氮合酶的变化.方法:用线栓法建立大脑中动脉梗死(MCAO)模型,观察局灶性脑缺血30 min再灌注30 min、1 h、3 h、 6 h、12 h、24 h、48 h 、72 h、96 h、168 h NO含量和NOS活性的变化.结果:脑缺血/再灌注过程中NO含量和NOS活性呈"双峰样"改变.缺血/再灌注30 min后NO含量和NOS活性升高,再灌注3 h时NO含量和NOS活性下降,再灌注6 h、12 h、24 h、48 h 、72 h NO含量和NOS活性再次显著升高,与再灌注72 h达峰值.结论:NO和NOS通过多种途径参与了脑缺血/再灌注损伤的病理过程.  相似文献   

10.
借助表皮条分析和激光扫描共聚焦显微镜技术,对NO和H2O2在光/暗调控蚕豆(Vicia faba L.)气孔运动中的作用及其相互关系进行了探索.结果显示,光下外源NO供体硝普钠(SNP)和H2O2促进气孔关闭的效应明显大于暗中,暗中NO专一性清除剂2,4-羧基苯-4,4,5,5-四甲基咪唑-1-氧-3-氧化物(cPTIO)、一氧化氮合酶(NOS)抑制剂NG-氮-L-精氨酸-甲酯(L-NAME)和H2O2清除剂抗坏血酸(Vc)、过氧化氢酶(CAT)对气孔开度的效应明显大于光下,而且光下蚕豆保卫细胞NO和H2O2水平比暗中明显降低.上述结果表明,光/暗通过影响保卫细胞NO和H2O2的水平调控气孔运动.研究还发现,光下H2O2既诱导NO水平增加,也诱导气孔关闭,cPTIO和L-NAME有效地逆转H2O2的这些效应;光下SNP既诱导H2O2水平增加,也诱导气孔关闭,SNP的上述效应又被Vc和CAT有效逆转.这些结果表明,NO和H2O2在生成及效应上均存在明显的相互作用.另外,L-NAME显著逆转暗和光下H2O2处理对气孔关闭和NO生成的效应表明,蚕豆保卫细胞中可能存在NOS,暗和光下H2O2处理可能通过提高NOS的活性促进NO水平增加,进而诱导气孔关闭.  相似文献   

11.
Nitric oxide (NO) is a multifunctional molecule involved in numerous physiological processes in plants. In this study, we investigate the spatiotemporal changes in NO levels and endogenous NO‐generating system in auxin‐induced adventitious root formation. We demonstrate that NO mediates the auxin response, leading to adventitious root formation. Treatment of explants with the auxin indole‐3‐butyric acid (IBA) plus the NO donor sodium nitroprusside (SNP) together resulted in an increased number of adventitious roots compared with explants treated with SNP or IBA alone. The action of IBA was significantly reduced by the specific NO scavenger, 2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (c‐PTIO), and the nitric oxide synthase (NOS, enzyme commission 1.14.13.39) inhibitor, NG‐nitro‐l ‐arg‐methyl ester (l ‐NAME). Detection of endogenous NO by the specific probe 4,5‐diaminofluorescein diacetate and survey of NADPH–diaphorase activity (commonly employed as a marker for NOS activity) by histochemical staining revealed that during adventitious root formation, NO and NADPH–diaphorase signals were specifically located in the adventitious root primordia in the basal 2‐mm region (as zone I) of both control and IBA‐treated explants. With the development of root primordia, NO and NADPH–diaphorase signals increased gradually and were mainly distributed in the root meristem. Endogenous NO and NADPH–diaphorase activity showed overall similarities in their tissue localization. Distribution of NO and NADPH–diaphorase activity similar to that in zone I were also observed in the basal 2–4‐mm region (zone II) of IBA‐treated explants, but neither NO nor NADPH–diaphorase signals were detected in this region of the control explants. l ‐NAME and c‐PTIO inhibited the formation of adventitious roots induced by IBA and reduced both NADPH–diaphorase staining and NO fluorescence. These results show the dynamic distribution of endogenous NO in the developing root primordia and demonstrate that NO plays a vital role in IBA‐induced adventitious rooting. Also, the production of NO in this process may be catalyzed by a NOS‐like enzyme.  相似文献   

12.
Nitric oxide (NO) has been known as an important signal in plant antioxidative defense but its production and roles in water stress are less known. The present study investigated whether NO dependence on a NO synthase-lika (NOS) activity is involved in the signaling of drought-induced protective responses in maize seedlings. NOS activity, rate of NO release and drought responses were analyzed when NO donor sodium nitroprusside (SNP), NO scavenger c-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramathylimidazoline-1-oxyl-3-oxide) and NOS inhibitor L-NAME (NG-nitro-L-arginine methyl ester) were applied to both detached maize leaves and whole plants. Both NOS activity and the rate of NO release increased substantially under dehydration stress. The high NOS activity induced by c-PTIO as NO scavenger and NO accumulation Inhibited by NOS inhibitor L-NAME In dehydration-treated maize seedlings Indicated that most NO production under water deficit stress may be generated from NOS-like activity. After dehydration stress for 3 h, detached maize leaves pretreated with NO donor SNP maintained more water content than that of control leaves pretreated with water. This result was consistent with the decrease in the transpiration rate of SNP-treated leaves subjected to drought treatment for 3 h. Membrane permeability, a cell injury index, was lower in SNP-trested maize leaves under dehydration stress for 4 h when compared with the control leaves. Also, superoxide dismutsse (SOD) activity of SNP combined drought treatment maize leaves was higher than that of drought treatment alone, indicating that exogenous NO treatment alleviated the water loss and oxidative damage of maize leaves under water deficit stress. When c-PTIO as a specific NO scavenger was applied, the effects of applied SNP were overridden. Treatment with L-NAME on leaves also led to higher membrane permeability, higher transpiration rate and lower SOD activities than those of control leaves, indicating that NOS-like activity was involved in the antioxidative defense under water stress. These results suggested that NO dependence on NOS-like activity serves as a signaling component in the induction of protective responses and is associated with drought tolerance in maize seedlings.  相似文献   

13.
研究生长素、乙烯和一氧化氮(NO)对拟南芥下胚轴插条形成不定根的调节,以及生长素和乙烯信号转导成员在IAA促进不定根形成中的作用的结果表明:拟南芥切条以IAA和硝普钠(N0供体)单独处理7d后的不定根形成均受到促进,其中以50μmol·L^-1 IAAμmol·L^-1 SNP的促进作用为最强,乙烯的促进作用不明显;生长素运输和信号转导以及乙烯信号转导相关突变体对IAA促进生根作用的敏感性比野生型有所下降,特别是IAA14功能获得型的突变体。IAA和NO在促进不定根形成中有协同效应。  相似文献   

14.
Phytohormone salicylic acid (SA) plays important roles in plant responses to environmental stress. However, knowledge about the molecular mechanisms for SA affecting the stomatal movements is limited. In this paper, we demonstrated that exogenous SA significantly induced stomatal closure and nitric oxide (NO) generation in Arabidopsis guard cells based on genetic and physiological data. These effects were significantly inhibited by the NO scavenger c-PTIO, NO synthase (NOS) inhibitor L-NAME or nitrate reduc...  相似文献   

15.
Brassinosteroids (BRs) regulate various physiological processes, such as tolerance to stresses and root growth. Recently, a connection was reported between BRs and nitric oxide (NO) in plant responses to abiotic stress. Here we present evidence supporting NO functions in BR signaling during root growth process. Arabidopsis seedlings treated with BR 24-epibrassinolide (BL) show increased lateral roots (LR) density, inhibition of primary root (PR) elongation and NO accumulation. Similar effects were observed adding the NO donor GSNO to BR-receptor mutant bri1-1. Furthermore, BL-induced responses in the root were abolished by the specific NO scavenger c-PTIO. The activities of nitrate reductase (NR) and nitric oxide synthase (NOS)-like, two NO generating enzymes were involved in BR signaling. These results demonstrate that BR increases the NO concentration in root cells, which is required for BR-induced changes in root architecture.  相似文献   

16.
Prominent neurite outgrowth induced by genipin, a plant-derived iridoid, was substantially inhibited by addition of NG-nitro-L-arginine methyl ester (L-NAME), a nitric oxide (NO) synthase (NOS) inhibitor, and carboxy-PTIO, an NO scavenger, in PC12h cells. Increases of the NADPH-diaphorase activity and neuronal and inducible NOS proteins in cells preceded the neurite outgrowth after addition of genipin to medium. NO donors could induce the neurite outgrowth dose-dependently in the cells. On the other hand, an inhibitor of soluble guanylate cyclase (SGC), which is known to be a stimulatory target of NO, abolished greatly the genipin-induced neurite outgrowth. Addition of extracellular signal-regulated kinase (ERK) kinase inhibitors could almost completely abolish the neurite induction. L-NAME remarkably depressed genipin-stimulated phosphorylation of ERK-1 and -2. A neuritogenic effect of nerve growth factor (NGF) in PC12h cells was also remarkably inhibited by the NOS inhibitor, NO scavenger and SGC inhibitor. These findings suggest that induced NO production followed by cyclic GMP-mediated stimulation of the mitogen-activated protein kinase (MAPK) cascade is implicated in the neuritogenesis by genipin and NGF in PC12h cells.  相似文献   

17.
The sources of nitric oxide (NO) production in response to abscisic acid (ABA) and the role of NO in ABA-induced hydrogen peroxide (H(2)O(2)) accumulation and subcellular antioxidant defense in leaves of maize (Zea mays L.) plants were investigated. ABA induced increases in generation of NO and activity of nitric oxide synthase (NOS) in maize leaves. Such increases were blocked by pretreatment with each of the two NOS inhibitors. Pretreatments with a NO scavenger or NR inhibitors inhibited ABA-induced increase in production of NO, but did not affect the ABA-induced increases in activity of NOS, indicating that ABA-induced NO production originated from sources of NOS and NR. ABA- and H(2)O(2)-induced increases in expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by pretreatments with the NO scavenger, inhibitors of NOS and NR, indicating that NO is involved in the ABA- and H(2)O(2)-induced subcellular antioxidant defense reactions. On the other hand, NO donor sodium nitroprusside (SNP) reduced accumulation of H(2)O(2) induced by ABA, and c-PTIO reversed the effect of SNP in decreasing the accumulation of H(2)O(2). SNP induced increases in activities of subcellular antioxidant enzymes, and the increases were substantially prevented from occurring by the pretreatment with c-PTIO. These results suggest that ABA induces production of H(2)O(2) and NO, which can up-regulate activities of the subcellular antioxidant enzymes, to prevent overproduction of H(2)O(2) in maize plants. There is a negative feedback loop between NO and H(2)O(2) in ABA signal transduction in maize plants.  相似文献   

18.
19.
Possible modulation of Brewer's yeast-induced nociception by centrally (icv) administered nitric oxide (NO) modulators, viz., NO synthase (NOS) inhibitors, NO precursor, donors, scavengers and co-administration of NO donor (SIN-1) with NOS inhibitor (L-NAME) and NO scavenger (Hb) was investigated in rats. Administration of NOS inhibitors and NO scavenger Hb increased the pain threshold capacity significantly, whereas NO donors SIN-1, SNP and NO precursor L-arginine were found to be hyperalgesic. D-arginine, the inactive isomer of L-arginine and methylene blue, inhibitor of soluble guanylate cyclase failed to alter the nociceptive behaviour in rats. Co-administration of SIN-1 with L-NAME and Hb found to increase the nociceptive threshold. The results indicate, that centrally administered NO modulators alter the nociceptive transmission induced by Brewer's yeast in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号