首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The herpes simplex virus (HSV) single-stranded DNA-binding protein, ICP8, is required for viral DNA synthesis. Before viral DNA replication, ICP8 colocalizes with other replication proteins at small punctate foci called prereplicative sites. With the onset of viral genome amplification, these proteins become redistributed into large globular replication compartments. Here we present the results of immunocytochemical and biochemical analysis of ICP8 showing that various antibodies recognize distinct forms of ICP8. Using these ICP8-specific antibodies as probes for ICP8 structure, we detected a time-dependent appearance and disappearance of ICP8 epitopes in immunoprecipitation assays. Immunofluorescence staining of ICP8 in cells infected with different HSV mutant viruses as well as cells transfected with a limited number of viral genes demonstrated that these and other antigenic changes occur coincident with ICP8 assembly at intranuclear replication structures. Genetic analysis has revealed a correlation between the ability of various ICP8 mutant proteins to form the 39S epitope and their ability to bind to DNA. These results support the hypothesis that ICP8 undergoes a conformational change upon binding to other HSV proteins and/or to DNA coincident with assembly into viral DNA replication structures.  相似文献   

2.
Herpes simplex virus replicates its DNA within nuclear structures called replication compartments. In contrast, in cells in which viral DNA replication is inhibited, viral replication proteins localize to punctate structures called prereplicative sites. We have utilized viruses individually mutated in each of the seven essential replication genes to assess the function of each replication protein in the assembly of these proteins into prereplicative sites. We observed that four replication proteins, UL5, UL8 UL52, and UL9, are necessary for the localization of ICP8 (UL29) to prereplicative sites natural infection conditions. Likewise, four of the seven viral DNA replication proteins, UL5, UL52, UL9, and ICP8, are necessary for the localization of the viral DNA polymerase to prereplicative sites. On the basis of these results, we present a model for prereplicative site formation in infected cells in which the helicase-primase components (UL5, UL8, and UL52), the origin-binding protein (UL9), and the viral single-stranded DNA-binding protein (ICP8) assemble together to initiate the process. This is followed by the recruitment of the viral polymerase into the structures, a step facilitated by the polymerase accessory protein, UL42. Host cell factors can apparently substitute for some of these viral proteins under certain conditions, because the viral protein requirements for prereplicative site formation are reduced in transfected cells and in infected cells treated with drugs that inhibit DNA synthesis.  相似文献   

3.
A de Bruyn Kops  D M Knipe 《Cell》1988,55(5):857-868
Eukaryotic DNA synthesis is thought to occur in multienzyme complexes present at numerous discrete sites throughout the nucleus. We demonstrate here that cellular DNA replication sites identified by bromodeoxyuridine labeling are relocated in cells infected with herpes simplex virus such that they correspond to viral prereplicative structures containing the HSV DNA replication protein, ICP8. Thus components of the cellular DNA replication apparatus are present at viral prereplicative sites. Mutant virus strains expressing defective ICP8 do not alter the pattern of host cell DNA replication sites, indicating that functional ICP8 is required for the redistribution of cellular DNA replication complexes. This demonstrates that a specific protein molecule can play a role in the organization of DNA replication proteins at discrete sites within the cell nucleus.  相似文献   

4.
5.
Herpes simplex virus DNA replication proteins localize in characteristic patterns corresponding to viral DNA replication structures in the infected cell nucleus. The intranuclear spatial organization of the HSV DNA replication structures and the factors regulating their nuclear location remain to be defined. We have used the HSV ICP8 DNA-binding protein and bromodeoxyuridine labeling as markers for sites of herpesviral DNA synthesis to examine the spatial organization of these structures within the cell nucleus. Confocal microscopy and three-dimensional computer graphics reconstruction of optical series through infected cells indicated that viral DNA replication structures extend through the interior of the cell nucleus and appear to be spatially separate from the nuclear lamina. Examination of viral DNA replication structures in infected, binucleate cells showed similar or virtually identical patterns of DNA replication structures oriented along a twofold axis of symmetry between many of the sister nuclei. These results demonstrate that HSV DNA replication structures are organized in the interior of the nucleus and that their location is defined by preexisting host cell nuclear architecture, probably the internal nuclear matrix.  相似文献   

6.
Herpes simplex virus type 1 DNA replication occurs in nuclear domains termed replication compartments, which are areas of viral single-stranded DNA-binding protein (UL29) localization (M.P. Quinlan, L. B. Chen, and D. M. Knipe, Cell 36:857-868). In the presence of herpesvirus-specific polymerase inhibitors, UL29 localizes to punctate nuclear foci called prereplicative sites. Using versions of the helicase-primase complex proteins containing short peptide epitopes which can be detected in an immunofluorescence assay, we have found that the helicase-primase complex localizes to prereplicative sites and replication compartments. To determine if prereplicative site formation is dependent upon these and other essential viral replication proteins, we have studied UL29 localization in cells infected with replication-defective viruses. Cells infected with viruses that fail to express one of the three helicase-primase subunits or the origin-binding protein show a diffuse nuclear staining for UL29. However, in the presence of polymerase inhibitors, mutant-infected cells contain UL29 in prereplicative sites. Replication-defective viruses containing subtle mutations in the helicase or origin-binding proteins behaved identically to their null mutant counterparts. In contrast, cells infected with viral mutants which fail to express the polymerase protein contain prereplicative sites in the absence and presence of polymerase inhibitors. We propose that active viral polymerase prevents the formation of prereplicative sites. Models of the requirement of essential viral replication proteins in the assembly of prereplicative sites are presented.  相似文献   

7.
M P Quinlan  L B Chen  D M Knipe 《Cell》1984,36(4):857-868
The herpes simplex viral DNA-binding protein, ICP8, is targeted to two different locations in the cell nucleus as part of its maturation pathway. Prior to viral DNA synthesis ICP8 was found at discrete pre-replicative sites throughout the nucleus, where it exhibited a high salt-labile association with the nuclear matrix. During viral DNA replication ICP8 was localized in randomly distributed replication compartments, where it is bound to viral DNA. Initiation of viral DNA replication caused the protein to move from the prereplicative sites to the replication compartments, while inhibition of replication caused movement in the opposite direction. In cells where viral DNA synthesis was proceeding, a minor population of ICP8 may also have been associated with the prereplicative sites. The prereplicative sites may serve as a nuclear reservoir for ICP8 not bound to replicating or progeny DNA.  相似文献   

8.
When herpes simplex virus type 1 (HSV-1) DNA replication is blocked by viral polymerase inhibitors, such as phosphonoacetic acid (PAA) or acyclovir (ACV), UL29 (ICP8) localizes to numerous punctate nuclear foci which are called prereplicative sites. Since this pattern can form in cells infected with mutants which are defective in UL5, UL8, UL9, or UL52 in the presence of polymerase inhibitors (C. J. Lukonis and S. K. Weller, J. Virol. 70:1751-1758, 1996; L. M. Liptak, S. L. Uprichard, and D. M. Knipe, J. Virol. 70:1759-1767, 1996), we previously proposed that it is unlikely that these numerous UL29 foci actually represent a functional subassembly of viral replication proteins that could lead to the formation of replication compartments (C. J. Lukonis and S. K. Weller, J. Virol. 70:1751-1758, 1996). In this paper, we have investigated the requirement for formation of the prereplicative site pattern by using double mutants of HSV. From the analysis of mutants lacking both UL5 and UL9, we conclude that neither viral helicase is required for the prereplicative site pattern to form as long as a polymerase inhibitor is present. From the analysis of mutants defective in both UL30 and UL5, we suggest that the prereplicative site pattern can form under conditions in which viral and/or cellular polymerases are inhibited. Furthermore, reexamination of the UL29 staining pattern in cells infected with wild-type virus in the presence of PAA reveals that at least two different UL29 staining patterns can be detected in these cells. One population of cells contains numerous (greater than 20) punctate UL29 foci which are sites of cellular DNA synthesis. In another population of cells, fewer punctate foci (less than 15) are detected, and these structures do not colocalize with sites of cellular DNA synthesis. Instead, they colocalize with PML, a component of nuclear matrix structures known as ND10. We propose that ND10-associated UL29 sites represent domains at which replication compartments form.  相似文献   

9.
Using indirect immunofluorescence, well-characterized monoclonal and polyclonal antibodies, and temperature-sensitive (ts) mutants of herpes simplex virus type 1, we demonstrated that the 65-kilodalton DNA-binding protein (65KDBP), the major DNA-binding protein (infected cell polypeptide 8 [ICP8]), and the viral DNA polymerase (Pol) colocalize to replication compartments in the nuclei of infected cells under conditions which permit viral DNA synthesis. When viral DNA synthesis was blocked by incubation of the wild-type virus with phosphonoacetic acid, the 65KDBP, Pol, and ICP8 failed to localize to replication compartments. Instead, ICP8 accumulated nearly exclusively to prereplication sites, while the 65KDBP was only diffusely localized within the nuclei. Although some of the Pol accumulated in prereplication sites occupied by ICP8 in the presence of phosphonoacetic acid, a significant amount of Pol also was distributed throughout the nuclei. Examination by double-labeling immunofluorescence of DNA- ts mutant virus-infected cells revealed that the 65KDBP also did not colocalize with ICP8 to prereplication sites at temperatures nonpermissive for virus replication. These results are in disagreement with the hypothesis that ICP8 is the major organizational protein responsible for attracting other replication protein to prereplication sites in preparation for viral DNA synthesis (A. de Bruyn Kops and D. M. Knipe, Cell 55:857-868, 1988), and they suggest that other viral proteins, perhaps in addition to ICP8, or replication fork progression per se are required to organize the 65KDBP.  相似文献   

10.
Herpes simplex virus type 1 (HSV-1) DNA replication occurs in replication compartments that form in the nucleus by an ordered process involving a series of protein scaffold intermediates. Following entry of viral genomes into the nucleus, nucleoprotein complexes containing ICP4 can be detected at a position adjacent to nuclear domain 10 (ND10)-like bodies. ND10s are then disrupted by the viral E3 ubiquitin ligase ICP0. We have previously reported that after the dissociation of ND10-like bodies, ICP8 could be observed in a diffuse staining pattern; however, using more sensitive staining methods, we now report that in addition to diffuse staining, ICP8 can be detected in tiny foci adjacent to ICP4 foci. ICP8 microfoci contain UL9 and components of the helicase-primase complex. HSV infection also results in the reorganization of the heat shock cognate protein 70 (Hsc70) and the 20S proteasome into virus-induced chaperone-enriched (VICE) domains. In this report we show that VICE domains are distinct but adjacent to the ICP4 nucleoprotein complexes and the ICP8 microfoci. In cells infected with an ICP4 mutant virus encoding a mutant protein that cannot oligomerize on DNA, ICP8 microfoci are not detected; however, VICE domains could still be formed. These results suggest that oligomerization of ICP4 on viral DNA may be essential for the formation of ICP8 microfoci but not for the reorganization of host cell chaperones into VICE domains.  相似文献   

11.
Confocal microscopy allowed us to localize viral nonstructural (NS) and capsid (VP) proteins and DNA simultaneously in cells permissively infected with Aleutian mink disease parvovirus (ADV). Early after infection, NS proteins colocalized with viral DNA to form intranuclear inclusions, whereas VP proteins formed hollow intranuclear shells around the inclusions. Later, nuclei had irregular outlines and were virtually free of ADV products. In these cells, inclusions of viral DNA with or without associated NS protein were embedded in cytoplasmic VP protein. These findings implied that ADV replication within an infected cell is regulated spatially as well as temporally.  相似文献   

12.
Many DNA viruses replicate their genomes at nuclear foci in infected cells. Using indirect immunofluorescence in combination with fluorescence in situ hybridization, we colocalized the human papillomavirus (HPV) replicating proteins E1 and E2 and the replicating origin-containing plasmid to nuclear foci in transiently transfected cells. The host replication protein A (RP-A) was also colocalized to these foci. These nuclear structures were identified as active sites of viral DNA synthesis by bromodeoxyuridine (BrdU) pulse-labeling. Unexpectedly, the great majority of RP-A and BrdU incorporation was found in these HPV replication domains. Furthermore, E1, E2, and RP-A were also colocalized to nuclear foci in the absence of an origin-containing plasmid. These observations suggest a spatial reorganization of the host DNA replication machinery upon HPV DNA replication or E1 and E2 expression. Alternatively, viral DNA replication might be targeted to host nuclear domains that are active during the late S phase, when such domains are limited in number. In a fraction of cells expressing E1 and E2, the promyelocytic leukemia protein, a component of nuclear domain 10 (ND10), was either partially or completely colocalized with E1 and E2. Since ND10 structures were recently hypothesized to be sites of bovine papillomavirus virion assembly, our observation suggests that HPV DNA amplification might be partially coupled to virion assembly.  相似文献   

13.
14.
Tankyrase 1 is a poly(ADP-ribose) polymerase (PARP) which localizes to multiple subcellular sites, including telomeres and mitotic centrosomes. Poly(ADP-ribosyl)ation of the nuclear mitotic apparatus (NuMA) protein by tankyrase 1 during mitosis is essential for sister telomere resolution and mitotic spindle pole formation. In interphase cells, tankyrase 1 resides in the cytoplasm, and its role therein is not well understood. In this study, we found that herpes simplex virus (HSV) infection induced extensive modification of tankyrase 1 but not tankyrase 2. This modification was dependent on extracellular signal-regulated kinase (ERK) activity triggered by HSV infection. Following HSV-1 infection, tankyrase 1 was recruited to the nucleus. In the early phase of infection, tankyrase 1 colocalized with ICP0 and thereafter localized within the HSV replication compartment, which was blocked in cells infected with the HSV-1 ICP0-null mutant R7910. In the absence of infection, ICP0 interacted with tankyrase 1 and efficiently promoted its nuclear localization. HSV did not replicate efficiently in cells depleted of both tankyrases 1 and 2. Moreover, XAV939, an inhibitor of tankyrase PARP activity, decreased viral titers to 2 to 5% of control values. We concluded that HSV targets tankyrase 1 in an ICP0- and ERK-dependent manner to facilitate its replication.  相似文献   

15.
Epstein-Barr virus (EBV) productive DNA replication occurs at discrete sites, called replication compartments, in nuclei. In this study we performed comprehensive analyses of the architecture of the replication compartments. The BZLF1 oriLyt binding proteins showed a fine, diffuse pattern of distribution throughout the nuclei at immediate-early stages of induction and then became associated with the replicating EBV genome in the replication compartments during lytic infection. The BMRF1 polymerase (Pol) processivity factor showed a homogenous, not dot-like, distribution in the replication compartments, which completely coincided with the newly synthesized viral DNA. Inhibition of viral DNA replication with phosphonoacetic acid, a viral DNA Pol inhibitor, eliminated the DNA-bound form of the BMRF1 protein, although the protein was sufficiently expressed in the cells. These observations together with the findings that almost all abundantly expressed BMRF1 proteins existed in the DNA-bound form suggest that the BMRF1 proteins not only act at viral replication forks as Pol processive factors but also widely distribute on newly replicated EBV genomic DNA. In contrast, the BALF5 Pol catalytic protein, the BALF2 single-stranded-DNA binding protein, and the BBLF2/3 protein, a component of the helicase-primase complex, were colocalized as distinct dots distributed within replication compartments, representing viral replication factories. Whereas cellular replication factories are constructed based on nonchromatin nuclear structures and nuclear matrix, viral replication factories were easily solubilized by DNase I treatment. Thus, compared with cellular DNA replication, EBV lytic DNA replication factories would be simpler so that construction of the replication domain would be more relaxed.  相似文献   

16.
A subset of DNA replication proteins of herpes simplex virus (HSV) comprising the single-strand DNA-binding protein, ICP8 (UL29), and the helicase-primase complex (UL5, UL8, and UL52 proteins) has previously been shown to be sufficient for the replication of adeno-associated virus (AAV). We recently demonstrated complex formation between ICP8, AAV Rep78, and the single-stranded DNA AAV genome, both in vitro and in the nuclear HSV replication domains of coinfected cells. In this study the functional role(s) of HSV helicase and primase during AAV DNA replication were analyzed. To differentiate between their necessity as structural components of the HSV replication complex or as active enzymes, point mutations within the helicase and primase catalytic domains were analyzed. In two complementary approaches the remaining HSV helper functions were either provided by infection with HSV mutants or by plasmid transfection. We show here that upon cotransfection of the minimal four HSV proteins (i.e., the four proteins constituting the minimal requirements for basal AAV replication), UL52 primase catalytic activity was not required for AAV DNA replication. In contrast, UL5 helicase activity was necessary for fully efficient replication. Confocal microscopy confirmed that all mutants retained the ability to support formation of ICP8-positive nuclear replication foci, to which AAV Rep78 colocalized in a manner strictly dependent on the presence of AAV single-stranded DNA (ssDNA). The data indicate that recruitment of AAV Rep78 and ssDNA to nuclear replication sites by the four HSV helper proteins is maintained in the absence of catalytic primase or helicase activities and suggest an involvement of the HSV UL5 helicase activity during AAV DNA replication.  相似文献   

17.
M Gao  D M Knipe 《Journal of virology》1989,63(12):5258-5267
We have isolated several mutant herpes simplex viruses, specifically mutated in the infected cell protein 8 (ICP8) gene, to define the functional domains of ICP8, the major viral DNA-binding protein. To facilitate the isolation of these mutants, we first isolated a mutant virus, HD-2, with the lacZ gene fused to the ICP8 gene so that an ICP8-beta-galactosidase fusion protein was expressed. This virus formed blue plaques on ICP8-expressing cell lines in the presence of 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside. Mutated ICP8 gene plasmids cotransfected with HD-2 DNA yielded recombinant viruses with the mutant ICP8 gene incorporated into the viral genome. These recombinants were identified by formation of white plaques. Four classes of mutants were defined: (i) some expressed ICP8 that could bind to DNA but could not localize to the cell nucleus; (ii) some expressed ICP8 that did not bind to DNA but localized to the nucleus; (iii) some expressed ICP8 that neither bound to DNA nor localized to the nucleus; and (iv) one expressed ICP8 that localized to the cell nucleus and bound to DNA in vitro, but the mutant virus did not replicate its DNA. These classes of mutants provide genetic evidence that DNA binding and nuclear localization are distinct functions of ICP8 and that ICP8 has nuclear functions other than binding to DNA. Furthermore, the portion of ICP8 needed for a nuclear function(s) distinct from DNA binding is the part of ICP8 showing sequence similarity to that of the cellular protein cyclin or proliferating cell nuclear antigen.  相似文献   

18.
19.
The herpes virus-encoded DNA replication protein, infected cell protein 8 (ICP8), binds specifically to single-stranded DNA with a stoichiometry of one ICP8 molecule/12 nucleotides. In the absence of single-stranded DNA, it assembles into long filamentous structures. Binding of ICP8 inhibits DNA synthesis by the herpes-induced DNA polymerase on singly primed single-stranded DNA circles. In contrast, ICP8 greatly stimulates replication of circular duplex DNA by the polymerase. Stimulation occurs only in the presence of a nuclear extract from herpes-infected cells. Appearance of the stimulatory activity in nuclear extracts coincides closely with the time of appearance of herpes-induced DNA replication proteins including ICP8 and DNA polymerase. A viral factor(s) may therefore be required to mediate ICP8 function in DNA replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号