首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
目的:初步探讨高糖诱导肾小球系膜细胞表达肿瘤坏死因子α(TNFα-)的机制。方法:分别用p38丝裂原活化蛋白激酶(p38MAPK)特异性抑制剂SB203580、核因子-κB(NFκ-B)特异性抑制剂PDTC预刺激肾小球系膜细胞30 min,再以高糖(20 mmol/L)干预48 h后,分别采用RT-PCR法检测系膜细胞内TNFα-mRNA水平,Western blot法检测系膜细胞内磷酸化p38MAPK蛋白水平、细胞核及细胞浆NFκ-B p65蛋白水平。结果:与低糖对照组相比,高糖可促进肾小球系膜细胞内TNFα-mRNA表达,以及p38MAPK、NFκ-B蛋白活化;SB203580(10 mmol/L)、PDTC(10 mmol/L)预刺激肾小球系膜细胞均可抑制高糖诱导肾小球系膜细胞表达TNFα-,且SB203580可抑制高糖诱导系膜细胞内NFκ-B蛋白活化。结论:p38MAPK-NFκ-B信号途径参与介导高糖诱导肾小球系膜细胞表达TNFα-。  相似文献   

2.
AMPK在姜黄素诱导CaOV3人卵巢癌细胞凋亡中的作用   总被引:3,自引:0,他引:3  
目的:探讨AMPK(腺苷酸活化蛋白激酶)系统在姜黄素诱导CaOV3人卵巢癌细胞凋亡中的作用及姜黄素对AMPK磷酸化水平及其信号通路的影响.方法:实验分为对照组、姜黄素单独作用组、compound C(AMPK抑制剂)预给药组,SB203580(p38抑制剂)预给药组,AMPK抑制剂单独作用组以及p38抑制剂单独作用组.Western blotting法检测AMPK、p38和p53的磷酸化水平,MTT法检测细胞活力.结果:与对照组相比,姜黄素作用组的AMPK和p38磷酸化水平增加(P<0.05),与姜黄素单独作用组相比,SB203580预处理组的AMPK磷酸化水平下降(P<0.05).姜黄素作用组的细胞活力低于对照组(P<0.05),compound C和SB203580预处理组的细胞活力高于姜黄素单独作用组(P<0.05).与对照组相比,姜黄素作用组的p53磷酸化水平(Ser 15)增加(P<0.05),与姜黄素单独作用组相比,compound C(AMPK抑制剂)和SB203580预处理组的p53磷酸化水平(Ser 15)下降(P<0.05).结论:姜黄素能激活CaOV3细胞的AMPK,而AMPK的激活依赖于p38.AMPK和p38调节p53的磷酸化,并介导姜黄素诱导的细胞凋亡.  相似文献   

3.
谷氧还蛋白1(glutaredoxin1,Grx1)是细胞内一种重要的巯基 二硫键氧化还原酶,在细胞内氧化还原状态的调控及抵抗氧化应激损伤过程中发挥重要作用.为进一步探讨Grx1的抗氧化机制,本实验将重组质粒pcDNA3.1(+)-hGrx1瞬时转染HEK293T细胞,经RT-PCR和Western印迹验证,细胞转染后实现了Grx1的过表达;以不同浓度H2O2为损伤因素,建立细胞氧化应激模型,检测过表达Grx1后细胞存活率,丙二醛(MDA)含量,超氧化物歧化酶(SOD)活力和乳酸脱氢酶(LDH)漏出率的变化,观察过表达Grx1后细胞的抗氧化能力;用终浓度100 μmol/LH2O2作用于细胞,利用Western 印迹检测120 min内HEK293T细胞中p38MAPK磷酸化水平.实验结果表明,HEK293T细胞过表达Grx1后,缓解了细胞的氧化应激损伤;转染空载体组细胞p38MAPK磷酸化水平在H2O2刺激后5 min开始升高,15 min达到最高值,并可维持至120 min左右;而过表达Grx1组细胞p38MAPK磷酸化水平在H2O2刺激后各时间段没有明显改变,提示Grx1通过抑制H2O2诱导的p38MAPK信号通路激活发挥其抗氧化作用.  相似文献   

4.
以α1,2-岩藻糖转移酶基因转染前后卵巢癌细胞RMG-I、RMG-I-H为细胞模型,用细胞免疫荧光方法检测转染前后细胞p38MAPK和p-p38MAPK的细胞内定位,RT-PCR和Western blot方法从mRNA和蛋白质两个水平检测转染前后细胞p38MAPK表达的变化;以兔抗人IgG抗体处理组为对照,分别利用RT-PCR和Western blot方法检测Lewisy单克隆抗体处理前后RMG-I-H细胞p38MAPK mRNA和蛋白质表达水平的变化;以0.1%DMSO为对照,用流式细胞仪(FCM)检测p38MAPK特异性抑制剂SB203580处理后RMG-I-H凋亡比率的变化,并利用RT-PCR和Western blot方法检测caspase-3的mRNA和蛋白质水平的变化;用RT-PCR方法检测卡铂和SB203580处理后p38MAPK及caspase-3表达的变化.结果表明,RMG-I与RMG-I-H的p38MAPK蛋白主要定位在细胞质,p-p38MAPK蛋白定位在细胞核,转染后p38MAPK的mRNA水平明显高于转染前(P<0.05);Lewisy单克隆抗体处理后RMG-I-H细胞p38MAPK m...  相似文献   

5.
采用增强型绿色荧光蛋白(EGFP)示踪的方法,研究人DJ-1蛋白在真核细胞中的 定位及其对刺激的反应. 将克隆在pGEX-KG上的DJ-1亚克隆到载体pEGFP-C2上,对 阳性克隆进行PCR、酶切和测序鉴定,用脂质体转染NIH3T3细胞;并用荧光显微镜观察 pEGFP-DJ-1在细胞内的定位以及在血清刺激时的移位;探讨在氧化应激时DJ-1对细胞的保护作用,以及其在细胞内定位的变化. 重组质粒在NIH3T3细胞中得到高效表达,绿色荧光弥散分布于胞质、胞核中,但以胞质居多;血清刺激后,细胞中的绿色荧光从胞质移位到胞核;在200~600 μmol/L H2O2刺激下,DJ-1能有效保护细胞抵抗氧化应激,并且也能从胞质移位到胞核.上述研究结果为进一步研究DJ-1蛋白的功能提供了一个重要依据.  相似文献   

6.
p38在小鼠着床前胚胎中的表达   总被引:1,自引:0,他引:1  
探讨p38 MAPK在小鼠着床前胚胎期的表达图式,并对其作用作初步分析.用免疫印迹法分析胚胎全裂解物中的p38蛋白.为考察p38在着床前发育中的作用,在胚胎培养液中添加p38专一性抑制剂SB203580.此外对同位素标记的胚胎作双向电泳分析,示踪ZGA(zygotic gene acti-vation,合子型基因激活)标志物TRC的表达情况.在卵母细胞中能检测到低水平的p38蛋白,而在合子中的检测度更低,表明p38是贮存于卵母细胞内的母型转录物,自减数分裂期随其它母型转录物一起逐步降解.到2细胞中期p38蛋白的表达量开始恢复,在4细胞时达到顶峰,在8细胞时又跌落.p38蛋白在2到4细胞期的表达量上升提示该蛋白在小鼠着床前胚胎发育中可能发挥一定作用.经与p38抑制剂SB203580共培养后的2细胞中期胚胎中仍能清晰检测到TRC,因而以TRC为标志的ZGA对SB203580不敏感.SB203580同样不能阻止胚胎发育到桑椹胚期.  相似文献   

7.
目的:观察丝裂原活化的蛋白激酶(MAPKs)抑制剂对大鼠肝细胞谷胱甘肽(GSH)代谢的影响,确定哪条途径与GSH代谢相关。方法:体外培养BRL大鼠肝细胞,以c-Jun NH2-末端激酶(JNK)途径抑制剂SP600125、p38途径抑制剂SB203580、细胞外信号调节激酶1/2(ERK1/2)途径抑制剂PD98659处理24 h,采用MTT法测定细胞活力,高效液相色谱法测定细胞内GSH含量,Luminex法测定JNK和磷酸化JNK (p-JNK)的蛋白表达,采用试剂盒测定GSH代谢酶活性。结果:SP600125浓度>5 μmol/L,SB203580浓度>20 μmol/L,PD98659浓度>40 μmol/L时,细胞活力受抑制;SP600125能显著减少大鼠肝细胞内还原型GSH的含量,SB203580和PD98659作用不明显;SP600125显著减少磷酸化JNK (p-JNK)蛋白表达,显著增强谷胱甘肽过氧化物酶(GSH-Px)的活力。结论:JNK MAPK途径参与了大鼠肝细胞GSH的代谢。  相似文献   

8.
Huang YF  Gong KZ  Zhang ZG 《生理学报》2003,55(4):454-458
建立培养乳鼠心肌细胞的缺氧/复氧(A/R)损伤模型和缺氧预处理(APC)模型,以细胞存活率、细胞内超氧化物趋化酶(SOD)活性、丙二醛(MDA)含量、培养上清液乳酸脱氢酶(LDH)活性作为反映心肌细胞损伤的指标。采用细胞外信号调节蛋白激酶(ERK1/2)抑制剂PD98059及丝裂素活化蛋白激酶p38α/β(p38α/β)阻滞剂SB203580干预模型,并以胶内原位磷酸化法测定ERK1/2和p38活性,借以探讨ERK1/2和p38α/β在缺氧预处理保护机制中的作用。结果表明:(1)在APC组,于预处理的缺氧时相给予PD98059,可以完全消除APC的延迟保护作用;在A/R组的缺氧时相加入PD98059对细胞损伤无影响;(2)在APC组的预处理缺氧时相给予p38α/β抑制剂SB203580并不能消除APC的保护作用,而在A/R组的持续缺氧时相给予SB203580则可显著减轻缺氧对细胞的损伤;(3)ERK1/2和p38总活性测定表明,缺氧可激活ERK1/2和p38,它们的活性在缺氧后4h时达到高峰,而经过APC处理后,两者活性高峰提前于缺氧后3h时出现,且峰值显著降低。上述结果提示,预处理过程中ERK1/2的激活可能是缺氧预处理延迟保护机制中细胞信号传递的重要环节,预处理阶段p38α/β的活化不参与APC诱导的延迟保护信号传递过程,p38的过度激活可能是缺氧/复氧损伤过程中的一个致损伤参与因素,而预处理抑制随后持续缺氧阶段p38的过度激活可能是其保护机制的一个环节。  相似文献   

9.
构建p38 Loop-12(L12)的TAT融合表达载体,纯化原核表达的p38L12融合蛋白并鉴定其在真核细胞内的功能.利用PCR方法分别扩增出p38L12及其“T-X-Y”双磷酸化位点的AF突变体p38L12(AF)片段,克隆入His标记的TAT-EGFP融合蛋白原核表达载体pHTE(pET14b-His-TAT-EGFP),经酶切、测序鉴定正确后,将重组质粒转化原核表达菌,诱导表达纯化融合蛋白;将融合蛋白加入ECV304细胞后于荧光显微镜下观察并行Western印迹分析,检测融合蛋白的细胞内转导活性;通过检测内源性ATF2磷酸化水平,鉴定高渗刺激下p38L12对内源性p38活性的影响.成功构建了p38L12和p38L12(AF)片段与TAT的融合表达载体,并获得相应的融合蛋白.在ECV304细胞中可见导入的HTE-p38L12和THE-p38L12(AF)融合蛋白具有较高的细胞内转导活性和转导效率,并可竞争性抑制高渗刺激对内源性p38的活化.基于HIV-1 TAT细胞转导系统证实p38L12可竞争性抑制高渗刺激诱导的内源性p38对ATF2的活化,从而发挥对p38激活特异性抑制的功能.  相似文献   

10.
为探讨血清淀粉样蛋白A(serum amyloid A,SAA)对巨噬细胞B类I型清道夫受体(scavenger receptor class B type I,SR-BI)的表达以及炎症反应的影响及分子机制,采用SAA、p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38-MAPK)激动剂anisomycin或抑制剂SB203580处理THP-1巨噬细胞,以实时定量PCR、Western blot和ELISA分别检测细胞中SR-BI、炎症因子及磷酸化p38-MAPK的表达。结果显示,与对照组相比,SAA处理THP-1细胞后,SR-BI的表达下调,而炎症因子与磷酸化p38蛋白的表达则上调,且这种效应呈浓度和时间依赖性(P<0.05)。与SAA单独处理组比较,SAA与p38-MAPK激动剂anisomycin共孵育细胞后,细胞SR-BI表达下调,炎症因子及磷酸化p38蛋白表达增加(P<0.05);而SAA与p38-MAPK抑制剂SB203580共同处理细胞后,细胞SR-BI表达增加,炎症因子及磷酸化p38蛋白表达减少(P<0.05)。结果提示,SAA可促进THP-1巨噬细胞炎症反应,其机制与p38-MAPK的磷酸化及SR-BI表达的下调有关。  相似文献   

11.
Proteomic analysis identified HSP27 phosphorylation as a major change in protein phosphorylation stimulated by Vascular Endothelial Growth Factor (VEGF) in Human Umbilical Vein Endothelial Cells (HUVEC). VEGF-induced HSP27 phosphorylation at serines 15, 78 and 82, but whereas HSP27 phosphorylation induced by H2O2 and TNFalpha was completely blocked by the p38 kinase inhibitor, SB203580, VEGF-stimulated serine 82 phosphorylation was resistant to SB203580 and small interfering(si)RNA-mediated knockdown of p38 kinase and MAPKAPK2. The PKC inhibitor, GF109203X, partially reduced VEGF-induced HSP27 serine 82 phosphorylation, and SB203580 plus GF109203X abolished phosphorylation. VEGF activated Protein Kinase D (PKD) via PKC, and siRNAs targeted to PKD1 and PKD2 inhibited VEGF-induced HSP27 serine 82 phosphorylation. Furthermore recombinant PKD selectively phosphorylated HSP27 at serine 82 in vitro, and PKD2 activated by VEGF in HUVECs also phosphorylated HSP27 selectively at this site. Knockdown of HSP27 and PKDs markedly inhibited VEGF-induced HUVEC migration and tubulogenesis, whereas inhibition of the p38 kinase pathway using either SB203580 or siRNAs against p38alpha or MAPKAPK2, had no significant effect on the chemotactic response to VEGF. These findings identify a novel pathway for VEGF-induced HSP27 serine 82 phosphorylation via PKC-mediated PKD activation and direct phosphorylation of HSP27 by PKD, and show that PKDs and HSP27 play major roles in the angiogenic response to VEGF.  相似文献   

12.
It is generally recognized that osteoporosis is a common complication of patients with glucocorticoid excess and that glucocorticoid receptor is associated with heat shock protein (HSP) 70 and HSP90 in a heterocomplex. In the present study, we investigated whether glucocorticoid induces HSP27, HSP70, and HSP90 in osteoblast-like MC3T3-E1 cells. Dexamethasone time-dependently increased the levels of HSP27, while having no effect on the levels of HSP70 or HSP90. The effect of dexamethasone was dose-dependent in the range between 0.1 nM and 0.1 microM. Dexamethasone induced an increase of the levels of mRNA for HSP27. Dexamethasone induced the phosphorylation of p38 mitogen-activated protein (MAP) kinase. SB203580 and PD169316, inhibitors of p38 MAP kinase, suppressed the HSP27 accumulation by dexamethasone. In addition, SB203580 reduced the dexamethasone-stimulated increase of the mRNA levels for HSP27. The dexamethasone-induced phosphorylation of p38 MAP kinase was reduced by SB203580. These results strongly suggest that glucocorticoid stimulates the induction of neither HSP70 nor HSP90, but HSP27 in osteoblasts, and that p38 MAP kinase is involved in the induction of HSP27.  相似文献   

13.
We investigated whether transforming growth factor-beta (TGF-beta) stimulates the induction of heat shock protein (HSP) 27 and HSP70 in osteoblast-like MC3T3-E1 cells and the mechanism underlying the induction. TGF-beta increased the level of HSP27 but had no effect on the HSP70 level. TGF-beta stimulated the accumulation of HSP27 dose-dependently, and induced an increase in the level of mRNA for HSP27. TGF-beta induced the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase. The HSP27 accumulation induced by TGF-beta was significantly suppressed by PD98059, an inhibitor of the upstream kinase of p44/p42 MAP kinase, or SB203580, an inhibitor of p38 MAP kinase. PD98059 and SB203580 suppressed the TGF-beta-stimulated increase in the level of mRNA for HSP27. Retinoic acid, a vitamin A (retinol) metabolite, which alone had little effect on the HSP27 level, markedly enhanced the HSP27 accumulation stimulated by TGF-beta. Retinoic acid enhanced the TGF-beta-induced increase of mRNA for HSP27. The amplification of TGF-beta-stimulated HSP27 accumulation by retinoic acid was reduced by PD98059 or SB203580. Retinoic acid failed to affect the TGF-beta-induced phosphorylation of p44/p42 MAP kinase or p38 MAP kinase. These results strongly suggest that p44/p42 MAP kinase and p38 MAP kinase take part in the pathways of the TGF-beta-stimulated HSP27 induction in osteoblasts, and that retinoic acid upregulates the TGF-beta-stimulated HSP27 induction at a point downstream from p44/p42 MAP kinase and p38 MAP kinase.  相似文献   

14.
The present study examined phosphorylation-dependent cellular localization and the thermoprotective role of heat shock protein (HSP) 25 in hippocampal HiB5 cells. HSP25 was induced and phosphorylated by heat shock (at 43 degrees C for 3 h). HSP25, which was located in the cytoplasm in the normal condition, translocated into the nucleus after the heat shock. Transfection experiments with hsp27 mutants in which specific serine phosphorylation residues (Ser(78) and Ser(82)) were substituted with alanines or aspartic acids showed that phosphorylation of HSP27 is accompanied by its nuclear translocation. Phosphorylation of mitogen-activated protein kinases (MAPKs) such as p38 MAPK and ERK was markedly increased by the heat shock, and SB203580 (a p38 MAPK kinase inhibitor) and/or PD098059 (a MEK inhibitor) inhibited the phosphorylation of HSP25, indicating that p38 MAPK and ERK are upstream regulators of HSP25 phosphorylation in the heat shock condition. In the absence of heat shock, actin filament stability was not affected by SB203580 and/or PD098059. Heat shock caused disruption of the actin filament and cell death when phosphorylation of HSP25 was inhibited by SB203580 and/or PD098059. In addition, actin filament was more stable in Asp(78,82)-hsp27 (mimics the phosphorylated form) transfected HiB5 cells than in the normal and Ala(78,82)-hsp27 (nonphosphorylative form) transfected cells. In accordance with actin filament stability, the survival rate against the heat shock increased markedly in Asp(15,78,82)-hsp27 expressing HiB5 cells but decreased in Ala(15,78,82)-hsp27 expressing cells. These results support the idea that phosphorylation of HSP25 is critical for the maintenance of actin filament and enhancement of thermoresistance. Interestingly, HSP25 was dephosphorylated and returned to cytoplasm in a recovery time-dependent manner. This phenomenon was accompanied by an increment of apoptotic cell death as determined by nuclear and DNA fragmentation and fluorescence-activated cell sorter analysis. These results suggest that nuclear-translocated HSP25 might function to protect nuclear structure, thereby preventing apoptotic cell death.  相似文献   

15.
We previously reported that p38 mitogen-activated protein (MAP) kinase takes a part in arginine vasopressin (AVP)-induced heat shock protein 27 (HSP27) phosphorylation in aortic smooth muscle A10 cells. In the present study, we investigated whether phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) is involved in the phosphorylation of HSP27 in these cells. AVP time-dependently induced the phosphorylation of PI3K and Akt. Akt inhibitor, 1l-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, partially suppressed the phosphorylation of HSP27. The AVP-induced HSP27 phosphorylation was attenuated by LY294002, a PI3K inhibitor. The combination of Akt inhibitor and SB203580, a p38 MAP kinase inhibitor, completely suppressed the AVP-induced phosphorylation of HSP27. Furthermore, LY294002 or Akt inhibitor did not affect the AVP-induced phosphorylation of p38 MAP kinase and SB203580 did not affect the phosphorylation of PI3K or Akt. These results suggest that PI3K/Akt plays a part in the AVP-induced phosphorylation of HSP27, maybe independently of p38 MAP kinase, in aortic smooth muscle A10 cells.  相似文献   

16.
Mechanism of simvastatin on induction of heat shock protein in osteoblasts   总被引:6,自引:0,他引:6  
It has recently been reported that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) stimulate bone formation. However, the mechanism of stimulation of bone metabolism by statins is not precisely clarified. In this study, we investigated whether simvastatin induces heat shock protein (HSP) 27, HSP70, and HSP90 in osteoblast-like MC3T3-E1 cells. Simvastatin increased the levels of HSP27 while having little effect on the levels of HSP70 or HSP90. The effect of simvastatin on HSP27 accumulation was dose dependent. Cycloheximide reduced the accumulation. Simvastatin induced an increase in the levels of mRNA for HSP27. Actinomycin D suppressed the mRNA levels. Simvastatin induced the phosphorylation of p38 mitogen-activated protein (MAP) kinase among the MAP kinase superfamily. SB203580 and PD169316, inhibitors of p38 MAP kinase, suppressed the HSP27 accumulation by simvastatin while SB202474, a negative control of p38 MAP kinase inhibitor, had no effect. SB203580 reduced the simvastatin-increased mRNA levels for HSP27. Lovastatin, another statin, also induced the HSP27 accumulation and SB203580 suppressed the HSP27 accumulation. These results strongly suggest that statins such as simvastatin do not stimulate the induction of HSP70 and HSP90, but do stimulate the induction of HSP27 in osteoblasts and that p38 MAP kinase plays a role in this induction.  相似文献   

17.
We previously showed that prostaglandin D(2) (PGD(2)) stimulates activation of protein kinase C (PKC). We investigated whether PGD(2) stimulates the induction of heat shock protein (HSP) 27 and HSP70 in osteoblast-like MC3T3-E1 cells and the mechanism underlying the induction. PGD(2) increased the levels of HSP27 while having little effect on HSP70 levels. PGD(2) stimulated the accumulation of HSP27 dose dependently in the range between 10 nM and 10 microM. PGD(2) induced an increase in the levels of mRNA for HSP27. The PGD(2)-stimulated accumulation of HSP27 was reduced by staurosporine or calphostin C, inhibitors of PKC. PGD(2) induced the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase. The HSP27 accumulation induced by PGD(2) was significantly suppressed by PD98059, an inhibitor of the upstream kinase of p44/p42 MAP kinase, or SB203580, an inhibitor of p38 MAP kinase. Calphostin C suppressed the PGD(2)-induced phosphorylation of p44/p42 MAP kinase and p38 MAP kinase. PD98059 or SB203580 suppressed the PGD(2)-increased levels of mRNA for HSP27. These results strongly suggest that PGD(2) stimulates HSP27 induction through p44/p42 MAP kinase activation and p38 MAP kinase activation in osteoblasts and that PKC acts at a point upstream from both the MAP kinases.  相似文献   

18.
We previously reported that p38 mitogen-activated protein (MAP) kinase plays a part in sphingosine 1-phosphate-stimulated heat shock protein 27 (HSP27) induction in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) is involved in the induction of HSP27 in these cells. Sphingosine 1-phosphate time dependently induced the phosphorylation of Akt. Akt inhibitor, 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, reduced the HSP27 induction stimulated by sphingosine 1-phosphate. The sphingosine 1-phosphate-induced phosphorylation of GSK-3beta was suppressed by Akt inhibitor. The sphingosine 1-phosphate-induced HSP27 levels were attenuated by LY294002 or wortmannin, PI3K inhibitors. Furthermore, LY294002 or Akt inhibitor did not affect the sphingosine 1-phosphate-induced phosphorylation of p38 MAP kinase and SB203580, a p38 MAP kinase inhibitor, had little effect on the phosphorylation of Akt. These results suggest that PI3K/Akt plays a part in the sphingosine 1-phosphate-stimulated induction of HSP27, maybe independently of p38 MAP kinase, in osteoblasts.  相似文献   

19.
Dengue virus (DENV) infection causes organ injuries, and the liver is one of the most important sites of DENV infection, where viral replication generates a high viral load. The molecular mechanism of DENV-induced liver injury is still under investigation. The mitogen activated protein kinases (MAPKs), including p38 MAPK, have roles in the hepatic cell apoptosis induced by DENV. However, the in vivo role of p38 MAPK in DENV-induced liver injury is not fully understood. In this study, we investigated the role of SB203580, a p38 MAPK inhibitor, in a mouse model of DENV infection. Both the hematological parameters, leucopenia and thrombocytopenia, were improved by SB203580 treatment and liver transaminases and histopathology were also improved. We used a real-time PCR microarray to profile the expression of apoptosis-related genes. Tumor necrosis factor α, caspase 9, caspase 8, and caspase 3 proteins were significantly lower in the SB203580-treated DENV-infected mice than that in the infected control mice. Increased expressions of cytokines including TNF-α, IL-6 and IL-10, and chemokines including RANTES and IP-10 in DENV infection were reduced by SB203580 treatment. DENV infection induced the phosphorylation of p38MAPK, and its downstream signals including MAPKAPK2, HSP27 and ATF-2. SB203580 treatment did not decrease the phosphorylation of p38 MAPK, but it significantly reduced the phosphorylation of MAPKAPK2, HSP27, and ATF2. Therefore, SB203580 modulates the downstream signals to p38 MAPK and reduces DENV-induced liver injury.  相似文献   

20.
Angiotensin II (AII, 100 nM) stimulation of bovine adrenal chromaffin cells (BACCs) produced angiotensin II receptor subtype 1 (AT1)-mediated increases in extracellular regulated protein kinase 1/2 (ERK1/2) and stress-activated p38MAPK (p38 kinase) phosphorylation over a period of 10 min. ERK1/2 and p38 kinase phosphorylation preceded Ser31 phosphorylation on tyrosine hydroxylase (TOH). The inhibitors of mitogen-activated protein kinase kinase 1/2 (MEK1/2) activation, PD98059 (0.1-50 microM) and UO126 (0.1-10 microM), dose-dependently inhibited both ERK2 and Ser31 phosphorylation on TOH in response to AII, suggesting MEK1/2 involvement. The p38 kinase inhibitor SB203580 (20 microM, 30 min) abolished Ser31 and Ser19 phosphorylation on TOH and partially inhibited ERK2 phosphorylation produced by AII. In contrast, 1 microM SB203580 did not affect AII-stimulated TOH phosphorylation, but fully inhibited heat shock protein 27 (HSP27) phosphorylation produced by AII. Also, 1 microM SB203580 fully inhibited Ser19 phosphorylation on TOH and HSP27 phosphorylation in response to anisomycin (30 min, 10 microg/mL). The results suggest that ERKs mediate Ser31 phosphorylation on TOH in response to AII, but p38 kinase is not involved. Previous studies suggesting a role for p38 kinase in the phosphorylation of Ser31 are explained by the non-specific effects of 20 microM SB203580 in BACCs. The p38 kinase pathway is able to phosphorylate Ser19 on TOH in response to anisomycin, but does not do so in response to AII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号