首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural characterization of a murine myeloid leukaemia inhibitory factor   总被引:1,自引:0,他引:1  
A leukaemia inhibitory factor (LIF) which induces macrophage differentiation in M1 murine myeloid leukaemia cells and suppresses their proliferation in vitro has been isolated in sufficient quantities (30 micrograms) from Krebs ascites tumour cell conditioned medium to permit its partial characterization by amino acid sequence analysis. The combination of sensitive microbore column (1.0 and 2.1 mm internal diameter) HPLC technology and microsequence analysis has enabled the positive identification of 125 of the total 179 amino acid residues (70%) in the molecule. The amino acid sequence data reported here permitted the isolation of a partial cDNA clone encoding LIF [Gearing et al. (1987) EMBO J. 6, 3995-4002]. A candidate C-terminus of the LIF molecule predicted from the amino acid sequence was confirmed by subsequent isolation of a cDNA clone corresponding to the C-terminus of the protein. No strong similarity was revealed when the amino acid sequence of LIF was compared with other haemopoietic growth factors, in particular granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor and tumour necrosis factor-alpha or interleukins. The protein sequence data reported here indicate three sites of post-translational modification (N-linked glycosylation).  相似文献   

2.
3.
PVC-211 murine leukemia virus (MuLV) is a replication-competent, ecotropic type C retrovirus that was isolated after passage of the Friend virus complex through F344 rats. Unlike viruses in the Friend virus complex, it does not cause erythroleukemia but causes a rapidly progressive hind limb paralysis when injected into newborn rats and mice. We have isolated an infectious DNA clone (clone 3d) of this virus which causes neurological disease in animals as efficiently as parental PVC-211 MuLV. The restriction map of clone 3d is very similar to that of the nonneuropathogenic, erythroleukemogenic Friend murine leukemia virus (F-MuLV), suggesting that PVC-211 MuLV is a variant of F-MuLV and that no major structural alteration was involved in its derivation. Studies with chimeric viruses between PVC-211 MuLV clone 3d and wild-type F-MuLV clone 57 indicate that at least one determinant for neuropathogenicity resides in the 2.1-kb XbaI-ClaI fragment containing the gp70 coding region of PVC-211 MuLV. Compared with nonneuropathogenic ecotropic MuLVs, the env gene of PVC-211 MuLV encodes four unique amino acids in the gp70 protein. Nucleotide sequence analysis also revealed a deletion in the U3 region of the long terminal repeat (LTR) of PVC-211 MuLV clone 3d compared with F-MuLV clone 57. In contrast to the env gene of PVC-211 MuLV, particular sequences within the U3 region of the viral LTR do not appear to be required for neuropathogenicity. However, the changes in the LTR of PVC-211 MuLV may be responsible for the failure of this virus to cause erythroleukemia, because chimeric viruses containing the U3 region of F-MuLV clone 57 were erythroleukemogenic whereas those with the U3 of PVC-211 MuLV clone 3d were not.  相似文献   

4.
We have mapped a linear epitope recognized by the virus-neutralizing monoclonal antibody 6-15C4 within the primary sequence of the G protein from the Evelyn-Rokitnicki-Abelseth strain of rabies virus. This was accomplished by using fragments of the rabies virus G protein and deduced amino acid sequences of neutralization-resistant variant rabies viruses. The monoclonal antibody 6-15C4 specifically recognized a synthetic peptide (peptide G5-24) which resembles the 6-15C4 epitope in structure. In addition, a tandem peptide constructed from the G5-24 peptide and a dominant TH cell epitope of the rabies virus N protein induced protective immunity against lethal rabies virus challenge infection in mice.  相似文献   

5.
A detailed comparison of the gp70 proteins of cloned ecotropic Friend murine leukemia virus (FLV) and dual-tropic Friend mink focus-forming virus (FrMCF) was performed by analyzing the structural and immunological properties of amino- and carboxy-terminal domains of these molecules generated upon controlled trypsinization. The two gp70s gave characteristic fragmentation patterns; the amino-terminal fragments of FrMCF gp70 were smaller than the corresponding fragments of FLV and contained a trypsin site which resulted in a 19,000-dalton amino-terminal fragment not observed for FLV, whereas both molecules yielded an identically sized carboxy-terminal fragment. All amino-terminal fragments of both gp70 molecules contained an endo H-sensitive oligosaccharide chain; for FrMCF, a second endo H-sensitive carbohydrate was present as well at a carboxy-terminal site for approximately 50% of the molecules. Several aspects of the disulfide interactions of the two gp70s were conserved; in both cases the carboxy-terminal fragments were disulfide bonded to p15(E), there were no disulfide bonds between amino- and carboxy-terminal fragments, and the amino-terminal fragments exhibited a significant increase in mobility upon analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. Analysis of the immunoreactivity of the different domains of the proteins by immunoprecipitation of the fragments with antisera prepared against xenotropic murine leukemia virus and feline leukemia virus gp70s indicated major differences in antigenicity for the amino-terminal domains of FLV and FrMCF gp70, whereas the carboxy-terminal domains were immunologically conserved. Similar analyses with antibodies specific for p15(E) and Pr15(E) demonstrate that these components are conserved as well. These data provide direct evidence that p15(E) and the C-terminal gp70 domain of FrMCF gp70 are related to the corresponding regions of the ecotropic FLV parent and indicate that the acquisition of MCF-specific properties is due to the replacement of the ecotropic amino-terminal gp70 domain with sequences related to those of xenotropic gp70s.  相似文献   

6.
The pathogenic Friend virus complex is of considerable interest in that, although members of this group are genetically related, they differ markedly in biochemical and biological properties. Heteroduplex mapping of molecular clones of the Friend virus complex, which includes the replication-competent ecotropic Friend murine leukemia virus (F-MuLV) and mink cell focus-forming virus (F-MCF) and replication-defective polycythemia- and anemia-inducing strains of spleen focus-forming virus (SFFVp and SFFVa, respectively), was employed to provide insight into the molecular basis of their relationships. In heteroduplexes of F-MuLV X F-MCF, a major substitution of 0.89 kilobases in the env gene of F-MCF was discerned. Heteroduplexes of SFFVp X F-MuLV or F-MCF and SFFVa X F-MuLV or F-MCF showed several major deletions in the pol gene region and a single major deletion in the 3' half of the env gene region of SFFVp and SFFVa. A major substitution of 0.89 kilobases was mapped to the 5' end of the env deletion of SFFVp and SFFVa in heteroduplexes with F-MuLV, similar to that seen in F-MuLV X F-MCF heteroduplexes. In contrast, this env gene region was totally homologous in F-MCF X SFFVp or SFFVa and SFFVp X SFFVa heteroduplexes. Our results suggest that (i) both SFFVp and SFFVa lack part of the env gene at its 3' end, corresponding to the p15(E) coding region, (ii) major deletions occur in the pol and env genes which account for the replication defectiveness of SFFVp and SFFVa, (iii) minor substitutions occur in the gag gene region of SFFVa that are not present in SFFVp, F-MuLV, or F-MCF, (iv) a major substitution exists in the gp70 region of the env gene between F-MuLV and F-MCF that probably accounts for the differences in their host range specificities, (v) this substitution in F-MCF is identical to the gp70 part of the gp52 coding region of SFFVp and SFFVa, and (vi) heteroduplexes to F-MCF show unambiguously that no additional large substitutions are present in SFFVp or SFFVa that could account for differences in their leukemogenicity.  相似文献   

7.
The FIS variant is a weakly leukemogenic, relatively strong immunosuppressive murine retrovirus which was isolated from the T helper cells of adult NMRI mice infected with Friend murine leukemia virus (F-MuLV) complex (FV). Unlike FV, it does not induce acute erythroleukemia but retains the immunosuppressive property of FV and induces suppression of the primary antibody response rapidly and persistently in adult mice. A previous study showed that the FIS variant contains two viral components, a replication-competent virus and a defective virus. In this study, we have biologically purified the FIS variant by end point dilution and we show that the replication-competent virus FIS-2 alone can induce immunosuppression as the parental FIS variant. Most newborn mice infected with FIS-2 developed erythroleukemia, but with an increased latency period compared with that of F-MuLV clone 57. In contrast, FIS-2 induced suppression of the primary antibody response and disease more rapidly than F-MuLV clone 57 in immunocompetent, adult mice. FIS-2 was further molecularly cloned and characterized. Restriction mapping and nucleotide sequence analysis of FIS-2 showed a high degree of homology between FIS-2 and F-MuLV clone 57, suggesting that FIS-2 is a variant of F-MuLV. The striking difference is the deletion of one of the tandem repeats in the FIS-2 long terminal repeat and the single point mutation in the binding sites for core-binding protein and FVa compared with the long terminal repeat of F-MuLV clone 57. Two single point mutations led to the appearance of two extra potential N glycosylation sites in the FIS-2 gag-encoded glycoprotein. Together, the results suggest that FIS-2 represents an interesting murine model to study retrovirus-induced immunosuppression on the basis of its unique combined property of low leukemogenicity and relatively strong and persistent immunosuppressive activity in adult mice.  相似文献   

8.
The transport of the gp70 glycoprotein to the cell surface and concomitant release of infectious virus was inhibited by treatment of Friend murine leukemia virus-infected Eveline cells with the sodium ionophore monensin. Virus yields were reduced more than 50-fold by 10(-5) M monensin, whereas particle production was reduced by 50% in monensin-treated cells. The resulting particles failed to incorporate newly synthesized gp70 and p15(E), whereas the other structural proteins, p30, p15, p12, and p10, were incorporated into virions. However, monensin did not inhibit the incorporation into virions of preformed gp70. A reduction in the efficiency of cleavage of the PrENV glycoprotein precursor and a defect in the processing of simple endo-H-sensitive to complex endo-H-resistant oligosaccharides suggest that intracellular transport of gp70 may be blocked before its entry into the Golgi apparatus. Fewer particles were found to bud from the cell surface, but intracellular vacuoles with budding virions were detected. Ferritin labeling and pulse-chase studies suggested a cell surface origin for these vacuoles. These experiments indicate that monensin inhibits the transport of Friend murine leukemia virus glycoproteins at an early stage, with a resultant block in the assembly and release of infectious virus.  相似文献   

9.
A preparative method for isolating pure viral envelopes from a type-C RNA tumor virus, Rauscher murine leukemia virus, is described. Fractionation of virions of Rauscher murine leukemia virus was studied after disruption of the virions with the detergents sodium dodecyl sulfate of Nonidet P-40 in combination with ether. Fractionation was performed through flotation in a discontinuous sucrose gradient and, as appeared from electron microscopic examination, a pure viral envelope fraction was obtained in this way. By use of sensitive competition radioimmunoassays or sodium dodecyl sulfate-polyacrylamide gel electrophoresis after immunoprecipitation with polyvalent and monospecific antisera directed against Rauscher murine leukemia virus proteins, the amount of the gag and env gene-encoded structural polypeptides in the virions and the isolated envelope fraction was compared. The predominant viral structural polypeptides in the purified envelope fraction were the env gene-encoded polypeptides gp70, p15(E), and p12(E), whereas, except for p15, there was only a relatively small amount of the gag gene-encoded structural polypeptides in this fraction.  相似文献   

10.
M Linder  V Wenzel  D Linder    S Stirm 《Journal of virology》1994,68(8):5133-5141
The disulfide-bonding pattern of glycoprotein 70 (gp70), the surface glycoprotein (SU) encoded by the envelope gene of polytropic Friend milk cell focus-inducing virus, was elucidated and compared with that of glycoprotein 71 (gp71), the corresponding glycoprotein of the ecotropic Friend murine leukemia virus, which had previously been determined (M. Linder, D. Linder, J. Hahnen, H.-H. Schott, and Stirm, Eur. J. Biochem. 203:65-73, 1992). In the carboxy-terminal constant domain, in which these glycoproteins have about 97% sequence homology, the location of the four disulfide bonds was found to be analogous. In the amino-terminal differential domain, with about 37% sequence homology, 8 of the 12 cysteine residues of the ecotropic SU are conserved in the polytropic SU. In this domain, a similar clustering of disulfide bonds was detected, which led to the identification of three distinct disulfide-bonded regions in both glycoproteins. However, because of deletions and sequence deviations, the glycoproteins must have significantly different three-dimensional structures in these regions. Since the receptor-binding functions of both glycoproteins have been attributed to their amino-terminal domains and since each binds to a different receptor, these disulfide-bonded structures are likely candidates for receptor-binding functions. Limited proteolysis of both glycoproteins with various endoproteinases led to the identification of preferential proteolytic sites between disulfide-bonded regions, at the beginning of the hypervariable proline-rich region, and between differential and constant domains, further confirming the structural organization of the folded glycoproteins.  相似文献   

11.
Retroviral interference is manifested in chronically infected cells as a decrease in susceptibility to superinfection by virions using the same cellular receptor. The pattern of interference reflects the cellular receptor specificity of the chronically infecting retrovirus and is mediated by the viral envelope glycoprotein, which is postulated to bind competitively all cellular receptors available for viral attachment. We established retroviral interference in mice by infecting them with Friend murine leukemia virus and them measured susceptibility to superinfection by challenging the mice with the erythroproliferative spleen focus-forming virus. Infection of approximately 10% of nucleated splenocytes rendered mice 1% as susceptible to superinfection as untreated controls. The magnitude of this effect was the same in mice incapable of producing neutralizing antibodies or genetically deficient for T cells. The results indicated that retroviral interference in vivo was established rapidly with infection of a fraction of the host cell population and that the decrease in susceptibility to superinfection occurred without a detectable contribution by immunologic factors.  相似文献   

12.
The transforming protein of the Abelson murine leukaemia virus encodes a protein-tyrosine kinase. Previously, we have shown that in Abelson-transformed cells, the Abelson kinase regulates the phosphoserine content of ribosomal protein S6. Phorbol 12-myristate 13-acetate (TPA), which activates protein kinase C, induces the phosphorylation of S6 at the same five phosphopeptides as found in S6 isolated from Abelson-transformed cells. We have investigated three models whereby the Abelson kinase might regulate S6 phosphorylation via the activation of protein kinase C. First, the Abelson kinase could phosphorylate protein kinase C on tyrosine. However, we do not detect significant amounts of phosphotyrosine in protein kinase C in vivo. Second, it has been suggested that protein-tyrosine kinases might phosphorylate phosphatidylinositol. This could increase the intracellular levels of diacylglycerol and thereby activate protein kinase C. Our data strongly suggest that direct phosphorylation of phosphatidylinositol by the Abelson protein-tyrosine kinase has no physiological role. Third, an indirect activation of protein kinase C may occur via an increase in the rate of phosphoinositide breakdown. We have found that phosphoinositide breakdown appears to be constitutively activated in Abelson-transformed cells. The implications of these observations are discussed with regard to S6 phosphorylation and the mechanism of Abelson-induced transformation.  相似文献   

13.
A new strain of Friend recombinant mink cell focus-inducing retrovirus, FMCF -1-E, was found to induce leukemias in NFS and IRW mice. Although the isolate was obtained from a stock of FMCF -1 ( Troxler et al., J. Exp. Med. 148:639-653, 1978), FMCF -1-E was distinguishable from FMCF -1 by oligonucleotide fingerprinting and antigenic analysis, using monoclonal antibodies. These analyses suggested that FMCF -1-E is a distinct FMCF isolate rather than a simple variant of FMCF -1. After neonatal inoculation, the latency for leukemia induction was 3 to 8 months. A similar long latency was also seen when Friend murine leukemia virus 57 was inoculated into adult (6-week-old) IRW mice. However, sequential inoculation of FMCF -1-E at birth followed by Friend murine leukemia 57 at 6 weeks of age led to a shortened latency period (2.5 to 4 months). Only neonatal inoculation of Friend murine leukemia virus 57 was able to induce a more rapid appearance of leukemia. The leukemia cell type in the majority of cases, regardless of virus inoculation protocol, was erythroid, but occasional myeloid, lymphoid, and mixed leukemias were also observed. In contrast to NFS and IRW mice, BALB/c mice were resistant to leukemia induction by FMCF -1-E and also showed some transient resistance to leukemia induction by Friend murine leukemia virus 57.  相似文献   

14.
15.
Four clones of murine leukemia viruses (PVC-111, PVC-211, PVC-321, and PVC-441) were isolated from a paralyzed Fischer rat which had been infected with rat-passaged Friend leukemia virus. PVC-211 and PVC-321 viruses induced hind leg paralysis in rats and killed them within 1 month, and PVC-441 did so within 2 months after infection, whereas PVC-111 did not within 4 months. PVC-321 and PVC-441 but not PVC-111 virus grew well in brain and spinal cord media. The viral antigens were found often in glia cells and rarely in neurons of the rats infected with each of these PVC viruses. All of the PVC viruses induced neuronal degeneration but neither inflammation nor leukemic infiltration in the spinal cord. The isolated viruses were all ecotropic and NB-tropic. Age dependency of the susceptibility of rats to paralysis induction was observed.  相似文献   

16.
Cell death of splenic Friend leukaemic cells has been studied in vivo, using 125I-UdR and 3H-TdR pulse labelling. The evolution of the splenic specific activity has been measured by autoradiography and external counting during 40 hr after injection of the labelled precursor. These two techniques show the existence of a large reutilization of 3H-TdR (50%), which is measurable as soon as 7 hr after the injection. The DNA turnover rate is rapid, 83-8% of the splenic cellular DNA being renewed per day. Those results confirm that most of the cells produced in the Friend leukaemic spleen are rapidly lost; they also demonstrate that this cell loss is mainly due to a massive death, which occurs in proerythroblastic and erythroblastic compartments after one or two cell divisions. Friend leukaemic cells, which are characterized by a limited capacity of proliferation and a short lifespan, do not appear to be malignant.  相似文献   

17.
18.
Friend murine leukemia virus (G-MuLV) is a helper-independent, type C retrovirus isolated from stocks of Friend virus complex (spleen focus-forming virus plus MuLV). In cell culture, F-MuLV has an ecotropic and NB-tropic host range and causes XC cells to fuse. When injected into newborn NIH Swiss mice, F-MuLV produces hepatosplenomegaly, severe anemia, and numerous circulating hematopoietic precursors in the peripheral blood with normal thymus and lymph nodes after 3 to 6 weeks. Recently, we molecularly cloned an 8.5-kilobase pair (kbp) form of F-MuLV DNA from which we could recover the pathogenic F-MuLV virus by DNA transfection of NIH 3T3 cells. From this molecularly cloned F-MuLV DNA, we have now subcloned in pBR322 a 4.1-kbp HindIII fragment which contains in continuity 3.0 kbp from the 3' terminus (env and c region), 0.6 kbp of the terminal repeat sequences, and 0.5 kbp from the 5'terminus of the viral RNA (genome). NIH 3T3 fibroblasts were transfected with this DNA fragment an then infected with the wild mouse amphotropic retrovirus (cl 1504-A). In cell culture, 1504-A is a helper-independent type C virus which has an N-tropic host range and does not cause fusion of XC cells. When injected into newborn NIH Swiss mice, 1504-A does not produce splenomegaly or thymic enlargement in mice held for up to 8 months. The transfection with the F-MuLV fragment and the infection with 1504-A consistently yielded virus preparations that were XC positive. From such virus stocks we were able to isolate both helper-independent and replication-defective XC-positive viruses. The helper-independent virus was shown to be a recombinant virus since it contains a gp70 molecule derived at least in part from F-MuLV and a specific gag precursor derived from 1504-A as determined by radioactive immune precipitation assays. When injected into newborn Swiss mice, the recombinant helper-independent virus caused hepatosplenomegaly in approximately 50% of the mice in 6 to 8 weeks. The histology of the diseased splenic tissue was indistinguishable from that seen in the disease caused by the whole F-MuLV. The replication-defective virus could be pseudotyped with new 1504-A virus, and this viral complex also caused the F-MuLV disease picture when the complex was injected into newborn Swiss mice. We conclude that the genetic information responsible for the pathogenicity of F-MuLV is contained within the 4.1-kbp DNA fragment, which includes env gene sequences, the terminal repeat sequences, and the c region sequences of the F-MuLV genome.  相似文献   

19.
Friend murine leukemia virus (F-MuLV), an erythroleukemogenic replication-competent retrovirus, induces leukemia in its host after a long latency. However, the early effects of infection may determine the pathway that eventually leads to malignant transformation. To determine how F-MuLV affects host cell proliferation soon after infection, BALB/c mice were inoculated with virus and then were assayed for susceptibility to appropriately pseudotyped spleen focus-forming virus (SFFV) as an indicator of erythropoietic activity. Twelve-week-old mice exposed to F-MuLV for 9 days were more susceptible (by a factor of 30) to superinfection by SFFV than were nonviremic mice. To test whether increased susceptibility was the result of increased hematopoietic activity, hematopoietic progenitors from the spleens of F-MuLV-infected mice were enumerated with a clonal culture assay. Nine days after inoculation with F-MuLV, the numbers of colony-forming progenitors increased by a factor of 4. Morphological analysis of the cultured colonies showed that erythroid, granulocytic, monocytic, and mixed granulocytic-monocytic progenitors all had increased. Thus, F-MuLV more rapidly induced a generalized increase in hematopoiesis than has previously been reported. The splenic hyperplasia induced by F-MuLV soon after infection may explain its ability to accelerate leukemogenesis in mice also infected by the polytropic Friend mink cell focus-forming virus.  相似文献   

20.
Purified gp71 of Friend murine leukemia virus (FLV) can interfere with virus infection, absorb neutralizing antibody, and in the presence of group-specific anti-gp71 antibody, hemagglutinate sheep erythrocytes. Interference by FLV gp71 with several murine leukemia viruses (MuLV) was tested in the XC and S + L- assay systems. Treatment of gp71 with trypsin or Pronase eliminated its interfering capacity. However, treatment with neuraminidase or a mixture of glycosidase enzymes, which left the major serological properties of gp71 intact, did not reduce the interference potential of gp71 for FLV or AKR MuLV. The capacity of gp71 to absorb type- or group-specific virus-neutralizing antibodies was similarly affected by the various enzyme treatments. In contrast, indirect hemagglutination by gp71 was abolished not only by proteases but also by treatment with glycosidase enzymes, although neuraminidase had no effect. Preliminary data indicate that infectivity of FLV or xenotropic MuLV was not affected by short treatment with glycosidase enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号