首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
"Cap" on the tip of Salmonella flagella   总被引:5,自引:0,他引:5  
Flagellar filaments isolated intact from a Salmonella short-flagella mutant are unable to serve as nuclei for flagellin polymerization in vitro, whereas the filaments reconstructed in vitro from the mutant flagellin are able to do so. The inability of intact flagella to nucleate flagellin polymerization appears to be common to wild-type bacteria and thus suggests that the tip of intact flagella are generally inactivated or capped in vivo. Careful observations of the tips of intact flagella and reconstructed flagellar filaments of a wild-type species have revealed marked difference between them: the intact flagella usually have blunt ends, whereas reconstructed filaments have concave, "fish-tail" ends. Moreover, a thin structure is often observed attaching to the very end of the intact flagella. We suspect that this "capping" structure is essential to the elongation mechanism of flagellar filaments.  相似文献   

2.
Incomplete flagellar structures were detected in osmotically shocked cells or membrane-associated fraction of many nonflagellate mutants of Salmonella typhimurium by electron microscopy. The predominant types of these structures in the mutants were cistron specific. The incomplete basal bodies were detected in flaFI, flaFIV, flaFVIII, and flaFIX mutants, the structure homologous to a basal body in flaFV mutants, the polyhook-basal body complex in flaR mutants, and the hook-basal body complex in flaL and flaU mutants. No structures homologous to flagellar bases or their parts were detected in the early-fla group nonflagellate mutants of flaAI, flaAII, flaAIII, flaB, flaC, flaD, flaE, flaFII, flaFIII, flaFVI, flaFVII, flaFX, flaK, and flaM. From these observations, a process of flagellar morphogenesis was postulated. The functions of the early-fla group are essential to the formation of S ring-M ring-rod complexes bound to the membrane. The completion of basal bodies requires succeeding functions of flaFI, flaFIV, flaFVIII, and flaFIX. Next, the formation of hooks attached to basal bodies proceeds by the function of flaFV and by flaR, which controls the hook length. Flagellar filaments appear at the tips of hooks because of the functions of flaL, flaU, and flagellin genes.  相似文献   

3.
Nine temperature-sensitive nonflagellate mutants defective in flaFV were isolated from a strain of Salmonella typhimurium. Among them three mutants were found to produce flagella with abnormally shaped (either straight or irregularly curved) hooks at the permissive temperature. Two mutations that rendered hooks straight were located in one of the eight segments of flaFV defined by deletion mapping. The mutation that rendered hooks irregularly curved was located in a different segment. An flaR mutation was introduced into the latter mutant. At the permissive temperature, the resulting double mutant produced polyhooks whose wavelength and amplitude were both exceedingly reduced. These polyhook structures were more thermolabile than those of the flaFV+ strain. Hook protein of the former strain was shown to have a slightly positive electric charge compared with that of the latter. From these results and other available information, it is inferred that flaFV is the structural gene for the hook protein in Salmonella.  相似文献   

4.
The production of hook protein and flagellin in 29 Fla- mutants of Escherichia coli K-12 was determined by the complement fixation assay. Six mutants produced hook protein, and four of them also produced flagellin. A flaE mutation was introduced into these fla mutants carrying the hook structure. All of these mutants made polyhooks and were used as hosts for a newly isolated host-range mutant of chi phage that has a high affinity for the hook structure. All except one mutant produced significant amounts of progeny phages. A flaD flaE double mutant was that exception which did not yield significant amounts of progeny by the phage propagation method. All of the flaE double mutants produced comparable amounts of polyhooks, and no qualitative difference was detected between chi-sensitive and chi-insensitive mutants by the complement fixation assay. Accordingly, it was thought that the polyhook of the flaD flaE mutant had a mechanical defect for chi phage infection. This assumption was confirmed by tethered-cell experiments; the flaD flaE mutant did not rotate. These results are well explained by a proposed regulation pathway of flagellar genes. flaE mutants can express other genes which govern the final step of the flagellar morphogenesis, whereas flaD mutants cannot rotate, possibly because the mocha operon is not expressed. The results obtained in E. coli were also found to be applicable to Salmonella typhimurium.  相似文献   

5.
A nonmotile mutant of Salmonella typhimurium, SJW1254, has very short flagella (less than 0.1 micron long) due to a mutation in the structural gene of flagellin (H2). When ammonium sulfate was added to the culture medium of SJW1254 grown to the late-log phase, a large amount of protein precipitated. Gel electrophoresis and immunodiffusion showed that more than 90% (wt/wt) of the precipitated protein was flagellin. The mutant flagellin appeared to be excreted in the monomeric form, in an amount comparable to the amount in the flagellar filaments of wildtype bacteria. No such precipitate was obtained from the medium of wild-type bacteria. The mutant flagellin had the same apparent molecular weight (55,000) and isoelectric point (5.3) as the wild-type flagellin, but differed in mobility in polyacrylamide gel electrophoresis under nondenaturing conditions. Moreover, the mutant flagellin did not polymerize in vitro under various conditions in which wild-type flagellin polymerized. These results suggested that the mutant bacteria excreted flagellin because the flagellin polymerized poorly and therefore could not be trapped at the tip of the flagellar filament. This short-flagella mutant should be useful for studying the mechanism of flagellin transport.  相似文献   

6.
Serological Study of Bacterial Flagellar Hooks   总被引:10,自引:10,他引:0       下载免费PDF全文
Bacterial hooks were partially purified from flagella isolated from Salmonella SJ25, by treatment with heat to depolymerize flagellar filaments and with n-butanol and calcium chloride to remove membranes. Antihook serum was obtained from a rabbit inoculated with a preparation of hooks. The serum contained antibodies directed against the flagellar filament and cell membrane. These antibodies could be removed from the serum by absorption with purified flagellar filaments and cells of a nonflagellated mutant strain. It was shown by electron microscopy that anti-SJ25-hook antibody reacts with hooks from a number of strains of Salmonella which differed from SJ25 in H and O antigens, flagellar shape, and motility. Hooks possessed by various strains of Salmonella have a common antigenicity. In addition, anti-SJ25-hook cross-reacted with hooks from Escherichia coli W3110 but did not react at all which those from strains of Serratia, Proteus, Aerobacter, and Klebsiella. It is well known that bacteria stop moving upon addition of antiflagella serum to the medium. However, the addition of purified antihook was found to have little effect on motility. At physiological ionic strength and pH, flagellin (Salmonella) can polymerize into flagellar filaments only in the presence of seeds. It was shown that a crude preparation of hooks was able to initiate in vitro polymerization of flagellin.  相似文献   

7.
8.
9.
The growth rate of flagellar hooks in Salmonella typhimurium was analyzed by computer-aided simulation of the length distributions of mutant hooks of uncontrolled length (polyhooks). The wild-type hook has a relatively well-controlled length, with an average of 55 nm and a standard deviation of 6 nm. Mutations in the fliK gene give rise to polyhooks. A histogram of the lengths of polyhooks from a fliK mutant shows a peak at 55 nm with a long monotonic tail extending out to 1 microm. To analyze the growth rate, we employed the population balance method. Regression analysis showed that the histogram could fit a combination of two theoretical curves. In the first phase of growth, the hook starts with a very fast growth rate (40 nm/min), and then the rate exponentially slows until the length reaches 55 nm. In the second phase of growth, where the hook length is over 55 nm, the hook grows at a constant rate of 8 nm/min. Second mutations in either the fliK or flhB genes, as found in pseudorevertants from fliK mutants, give rise to polyhook filaments (phf). The ratio between the numbers of hooks with and without filament was 6:4. The calculated probability of filament attachment to polyhooks was low so that the proportion of hooks that start filament growth was only 2% per minute. The lengths of polyhooks with and without filaments were measured. A histogram of hook length in phf's was the same as that for polyhooks in single-site fliK mutants, against the expectation that the distribution would shift to a shorter average. The role of FliK in hook length control is discussed.  相似文献   

10.
The genome of a halophilic archaeon Haloarcula marismortui carries two flagellin genes, flaA2 and flaB. Previously, we demonstrated that the helical flagellar filaments of H. marismortui were composed primarily of flagellin FlaB molecules, while the other flagellin (FlaA2) was present in minor amounts. Mutant H. marismortui strains with either flagellin gene inactivated were obtained. It was shown that inactivation of the flaA2 gene did not lead to changes in cell motility and helicity of the filaments, while the cells with inactivated flaB lost their motility and flagella synthesis was stopped. Two FlaB flagellin forms having different sensitivities to proteolysis were found in the flagellar filament structure. It is speculated that these flagellin forms may ensure the helical filament formation. Moreover, the flagella of a psychrotrophic haloarchaeon Halorubrum lacusprofundi were isolated and characterized for the first time. H. lacusprofundi filaments were helical and exhibited morphological polymorphism, although the genome contained a single flagellin gene. These results suggest that the mechanisms of flagellar helicity may differ in different halophilic archaea, and sometimes the presence of two flagellin genes, in contrast to Halobacterium salinarum, is not necessary for the formation of a functional helical flagellum.  相似文献   

11.
The length of flagellar hooks isolated from wild-type and mutant cells with various hook lengths were measured on electron micrographs. The length of the wild-type hook showed a narrow distribution with a peak (+/- standard deviation) at 55.0 +/- 5.9 nm, whereas fliK mutants (so-called polyhook mutants) showed a broad distribution of hook lengths ranging from 40 to 900 nm, strongly indicating that FliK is involved in hook length determination. Among pseudorevertants isolated from such polyhook mutants, fliK intragenic suppressors gave rise to polyhook filaments. However, intergenic suppressors mapping to flhB also gave rise to hooks of abnormal length, albeit they were much shorter than polyhooks. Furthermore, double mutations of flhB and flgK (the structural gene for hook-associated protein 1; HAP1) resulted in polyhooks, suggesting another way in which hook length can be affected. The roles of FliK, FlhB, and HAP1 in hook length determination are discussed.  相似文献   

12.
The polymerization of bacterial flagellin protein (Salmonella strain SJ814) into flagellar filaments has been found by direct calorimetric measurement to be exothermic at 25° in .15M KCl, pH 6.8 with a ΔH of ?12.7 ± 0.6 kcal per mole of monomer polymerized. The calorimetric result at 25° contrasts sharply with the endothermic ΔH of +38 kcal/mole inferred from temperature dependence of the critical monomer concentration near 40°C. Comparison between these two values implies that unless a different mechanism of polymerization prevails at the two temperatures the heat capacity change for flagellin polymerization may be as large as 3.3 kcal/mole deg.  相似文献   

13.
Salmonella enterica serovar Typhimurium strain LT2 possesses two nonallelic structural genes, fliC and fljB, for flagellin, the component protein of flagellar filaments. Flagellar phase variation occurs by alternative expression of these two genes. This is controlled by the inversion of a DNA segment, called the H segment, containing the fljB promoter. H inversion occurs by site-specific recombination between inverted repetitious sequences flanking the H segment. This recombination has been shown in vivo and in vitro to be mediated by a DNA invertase, Hin, whose gene is located within the H segment. However, a search of the complete genomic sequence revealed that LT2 possesses another DNA invertase gene that is located adjacent to another invertible DNA segment within a resident prophage, Fels-2. Here, we named this gene fin. We constructed hin and fin disruption mutants from LT2 and examined their phase variation abilities. The hin disruption mutant could still undergo flagellar phase variation, indicating that Hin is not the sole DNA invertase responsible for phase variation. Although the fin disruption mutant could undergo phase variation, fin hin double mutants could not. These results clearly indicate that both Hin and Fin contribute to flagellar phase variation in LT2. We further showed that a phase-stable serovar, serovar Abortusequi, which is known to possess a naturally occurring hin mutation, lacks Fels-2, which ensures the phase stability in this serovar.  相似文献   

14.
The Type III flagellar protein export apparatus of bacteria consists of five or six membrane proteins, notably FlhA, which controls the export of other proteins and is homologous to the large family of FHIPEP export proteins. FHIPEP proteins contain a highly‐conserved cytoplasmic domain. We mutagenized the cloned Salmonella flhA gene for the 692 amino acid FlhA, changing a single, conserved amino acid in the 68‐amino acid FHIPEP region. Fifty‐two mutations at 30 positions mostly led to loss of motility and total disappearance of microscopically visible flagella, also Western blot protein/protein hybridization showed no detectable export of hook protein and flagellin. There were two exceptions: a D199A mutant strain, which produced short‐stubby flagella; and a V151L mutant strain, which did not produce flagella and excreted mainly un‐polymerized hook protein. The V151L mutant strain also exported a reduced amount of hook‐cap protein FlgD, but when grown with exogenous FlgD it produced polyhooks and polyhook‐filaments. A suppressor mutant in the cytoplasmic domain of the export apparatus membrane protein FlhB rescued export of hook‐length control protein FliK and facilitated growth of full‐length flagella. These results suggested that the FHIPEP region is part of the gate regulating substrate entry into the export apparatus pore.  相似文献   

15.
Flagellation in archaea is widespread and is involved in swimming motility. Here, we demonstrate that the structural flagellin gene from the crenarchaeaon Sulfolobus solfataricus is highly expressed in stationary-phase-grown cells and under unfavorable nutritional conditions. A mutant in a flagellar auxiliary gene, flaJ, was found to be nonmotile. Electron microscopic imaging of the flagellum indicates that the filaments are composed of right-handed helices.  相似文献   

16.
Bacterial flagellar filaments grow at their distal ends, from flagellin that travels through a central channel ~2 nm in diameter. The flagellin is extruded from the cytoplasm by a pump powered by a proton motive force (PMF). We measured filament growth in cells near the mid-exponential-phase with flagellin bearing a specific cysteine-for-serine substitution, allowing filaments to be labeled with sulfhydryl-specific fluorescent dyes. We labeled filaments first with a green maleimide dye and then, following an additional period of growth, with a red maleimide dye. The contour lengths of the green and red segments were measured. The average lengths of red segments (~2.3 μm) were the same regardless of the lengths of the green segments from which they grew (ranging from less than 1 to more than 9 μm in length). Thus, flagellar filaments do not grow at a rate that decreases exponentially with length, as formerly supposed. If flagellar filaments were broken by viscous shear, the broken filaments continued to grow. Identical results were obtained whether flagellin was expressed from fliC on the chromosome under the control of its native promoter or on a plasmid under the control of the arabinose promoter.  相似文献   

17.
Effects of galU mutation on flagellar formation in Escherichia coli.   总被引:13,自引:8,他引:5       下载免费PDF全文
Y Komeda  T Icho    T Iino 《Journal of bacteriology》1977,129(2):908-915
Two mutants of Escherichia coli strictly deficient in uridine-diphosphoglucose pyrophosphorylase activity (galU) were found to have very small numbers of flagellar filaments and hooks. In these mutants, both the rate of flagellin (flagellar protein) synthesis and the amount of messenger ribonucleic acid specific for flagellin were considerably lower than in the parental strains. Motile revertants from the galU mutants were isolated and were found to carry a suppressor mutation, which was mapped in the flaH cistron. These strains formed swarms under conditions of catabolite repression; their intracellular concentration of cyclic adenosine 5'-monophosphate was the same as that in the parental strains. These results suggest that the outer membrane affects flagellar formation through the flaH gene product.  相似文献   

18.
Unlike external flagellated bacteria, spirochetes have periplasmic flagella (PF). Very little is known about how PF are assembled within the periplasm of spirochaetal cells. Herein, we report that FliD (BB0149), a flagellar cap protein (also named hook‐associated protein 2), controls flagellin stability and flagellar filament assembly in the Lyme disease spirochete Borrelia burgdorferi. Deletion of fliD leads to non‐motile mutant cells that are unable to assemble flagellar filaments and pentagon‐shaped caps (10 nm in diameter, 12 nm in length). Interestingly, FlaB, a major flagellin protein of B. burgdorferi, is degraded in the fliD mutant but not in other flagella‐deficient mutants (i.e., in the hook, rod, or MS‐ring). Biochemical and genetic studies reveal that HtrA, a serine protease of B. burgdorferi, controls FlaB turnover. Specifically, HtrA degrades unfolded but not polymerized FlaB, and deletion of htrA increases the level of FlaB in the fliD mutant. Collectively, we propose that the flagellar cap protein FliD promotes flagellin polymerization and filament growth in the periplasm. Deletion of fliD abolishes this process, which leads to leakage of unfolded FlaB proteins into the periplasm where they are degraded by HtrA, a protease that prevents accumulation of toxic products in the periplasm.  相似文献   

19.
The shape of the flagellar filaments of the bacterium Salmonella typhimurium under ordinary conditions is a left-handed helix. In addition to the normal wild-type filament, non-helical (i.e. straight), right-handed helical (early), or circular (semi-coiled and coiled) filaments and filament with small amplitude (fl-type) have been found in mutants or in filaments reconstituted in vitro. We analysed wild-type flagellin and flagellins from 17 flagellar-shape mutants (6 with straight filaments, 6 with curly filaments, 4 with coiled filaments and 1 with fl-type filament) by amino acid sequencing to identify the mutational sites. All mutant flagellins except that of the fl-type filament had single mutations; the fl-type flagellin had two mutations in the molecule. The sites of these mutations were localized in alpha-helical segments of the terminal regions of flagellin. A possible mechanism of the polymorphism of the flagellar filament is discussed.  相似文献   

20.
A mutant of Escherichia coli K12 has been found to produce straight flagellar filaments. Electron micrographs of the negatively stained filaments were analysed by optical diffraction and filtering methods. The filament appears to consist of a one-start basic helix with 11 subunits in two turns and with a pitch of 26 Å. One class of the rows of subunits runs closely parallel to the filament axis. We have found that the addition of acridines to the filament suspension induces side-by side aggregation of the filaments. The optical diffraction pattern of the aggregates is similar to that of untreated filaments.Straight filaments were observed to be reconstructed on polymerization of the isolated mutant flagellin in vitro. When the straight-type flagellin copolymerizes with normal-type flagellin, the wave form of the resultant filaments is either normal or heteromorphous. The latter consists of straight and normal-type parts.These results indicate that the straight filament described here is a novel type and differs from that of a mutant of Salmonella with respect to structure (O'Brien & Bennett, 1972) and to the wave form of the copolymer product (Asakura, 1970; Asakura & Iino, 1972).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号