首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methanothermobacter wolfeii (formerly Methanobacterium wolfei), a thermophilic methanoarchaeon whose cultures lyse upon hydrogen starvation, carries a defective prophage called PsiM100 on its chromosome. The nucleotide sequence of PsiM100 and its flanking regions was established and compared to that of the previously sequenced phage PsiM2 of Methanothermobacter marburgensis (formerly Methanobacterium thermoautotrophicum Marburg). The PsiM100 genome extends over 28,798 bp, and its borders are defined by flanking 21-bp direct repeats of a pure-AT sequence, which very likely forms the core of the putative attachment site where the crossing over occurred during integration. A large fragment of 2,793 bp, IFa, apparently inserted into PsiM100 but is absent in the genome of PsiM2. The remaining part of the PsiM100 genome showed 70.8% nucleotide sequence identity to the whole genome of PsiM2. Thirty-four open reading frames (ORFs) on the forward strand and one ORF on the reverse strand were identified in the PsiM100 genome. Comparison of PsiM100-encoded ORFs to those encoded by phage PsiM2 and to other known protein sequences permitted the assignment of putative functions to some ORFs. The ORF28 protein of PsiM100 was identified as the previously known autolytic enzyme pseudomurein endoisopeptidase PeiW produced by M. wolfeii.  相似文献   

2.
3.
Abstract A gene ( sod ) encoding Superoxide dismutase (SOD) was isolated from the strictly anaerobic archaeon Methanobacterium thermoautotrophicum Marburg. Its identity was confirmed by functional complementation of an Escherichia coli mutant strain lacking SOD activity and by DNA sequence analysis of a cloned fragment. Upstream of sod , separated by a 5-bp intergenic region, lies the open reading frame orfk which potentially codes for a protein of 209 amino acid residues. The amino acid sequence for this presumptive product had a similarity coefficient of 55.5% to a subunit of the alkyl hydroperoxide reductase (encoded by the ahpC gene) from Salmonella typhimurium .  相似文献   

4.
DNA reassociation was used to determine levels of relatedness among four thermophilic Methanobacterium strains that are able to use formate and between these organisms and two representative strains of Methanobacterium thermoautotrophicum, strain delta HT (= DSM 1053T = ATCC 29096T) (T = type strain) and strain Marburg (= DSM 2133). Three homology groups were delineated, and these groups coincided with the clusters identified by antigenic fingerprinting. The first group, which had levels of cross hybridization that ranged from 73 to 99%, included M. thermoautotrophicum delta HT, Methanobacterium thermoformicicum Z-245, Methanobacterium sp. strain THF, and Methanobacterium sp. strain FTF. The second and third groups were each represented by only one strain, Methanobacterium sp. strain CB-12 and M. thermoautotrophicum Marburg, respectively (cross-hybridization levels, 13 to 30 and 29 to 33%, respectively). Our results indicate that the name M. thermoformicicum should be rejected as it is a synonym of M. thermoautotrophicum. The taxonomic positions of strains Marburg and CB-12 need further investigation.  相似文献   

5.
Summary M1 is a virulent bacteriophage of Methanobacterium thermoautotrophicum strain Marburg. Restriction enzyme analysis of the linear, 30.4 kb phage DNA led to a circular map of the 27.1 kb M1 genome. M1 is thus circularly permuted and exhibits terminal redundancy of approximately 3 kb. Packaging of M1 DNA from a concatemeric precursor initiates at the pac site which was identified at coordinate 4.6 kb on the circular genome map. It proceeds clockwise for at least five packaging rounds. Headful packaging was also shown for M2, a phage variant with a 0.7 kb deletion at coordinate 23.25 on the map.  相似文献   

6.
The pseudomurein-degrading enzyme from autolysates of Methanobacterium wolfei was purified approximately 500-fold to electrophoretic homogeneity by ion-exchange chromatography under anaerobic conditions. Analysis of the soluble cell wall fragments produced by the pure enzyme from a cell wall preparation of M. thermoautotrophicum indicated that it is a peptidase hydrolyzing the epsilon-Ala-Lys bond of pseudomurein. A partially purified preparation of pseudomurein endopeptidase was free of nuclease activity and thus proved useful for the preparation in high yields of undegraded chromosomal and plasmid DNA from M. thermoautotrophicum. The partially purified enzyme was also used for the preparation of protoplasts, which were stabilized by 0.8 M sucrose. Under growth conditions the protoplasts produced methane and increased up to 100-fold in size, but failed to regenerate a cell wall.  相似文献   

7.
8.
Abstract Growth of Methanosarcina barkeri (strain Fusaro) was found to be inhibited by 5-fluorouracil (FU) only at relatively high concentrations (>50 μg / ml ). Inhibition could not be relieved by uracil. Therefore, FU probably did not exert its effect via inhibition of DNA synthesis as is the case in other organisms. Control experiments with Methanobacterium thermoautotrophicum (strain Marburg) on the other hand revealed that the effect of FU on this archaebacterium is probably exerted at the level of nucleic acid synthesis. The M. thermoautotrophicum cultures rapidly acquired resistance towards the pyramidine analog.  相似文献   

9.
A physical map of the Methanobacterium thermoautotrophicum Marburg chromosome was constructed by using pulsed-field gel electrophoresis of restriction fragments generated by NotI, PmeI, and NheI. The order of the fragments was deduced from Southern blot hybridization of NotI fragment probes to various restriction digests and from partial digests. The derived map is circular, and the genome size was estimated to be 1,623 kb. Several cloned genes were hybridized to restriction fragments to locate their positions on the map. Genes coding for proteins involved in the methanogenic pathway were located on the same segment of the circular chromosome. In addition, the genomes of a variety of thermophilic Methanobacterium strains were treated with restriction enzymes and analyzed by pulsed-field gel electrophoresis. The sums of the fragment sizes varied from 1,600 to 1,728 kb among the strains, and widely different macrorestriction patterns were observed.  相似文献   

10.
A recombinant cosmid carrying the Methanobacterium thermoautotrophicum Marburg trp genes was selected by complementation of Escherichia coli trp mutations. A 7.3-kb fragment of the cloned archaeal DNA was sequenced. It contained the seven trp genes, arranged adjacent to each other in the order trpEGCFBAD. No gene fusions were observed. The trp genes were organized in an operonlike structure, with four short (5- to 56-bp) intergenic regions and two overlapping genes. There was no indication for an open reading frame encoding a leader peptide in the upstream region of trpE. The gene order observed in the M. thermoautotrophicum trp operon was different from all known arrangements of the trp genes in archaea, bacteria, and eucarya. The encoded sequences of the Methanobacterium Trp proteins were similar in size to their bacterial and eucaryal counterparts, and all of them contained the segments of highly similar or invariant amino acid residues recognized in the Trp enzymes from bacteria and eucarya. The TrpE, TrpG, TrpC, TrpA, and TrpD proteins were 30 to 50% identical to those from representatives of other species. Significantly less sequence conservation (18 to 30%) was observed for TrpF, and TrpB exhibited a high degree of identity (50 to 62%) to the sequences of representatives of the three domains. With the exception of TrpB, the beta subunit of tryptophan synthase, tryptophan was absent from all Trp polypeptides.  相似文献   

11.
Abstract ATP synthesis driven by a potassium diffusion potential was studied in cell suspensions of Methanobacterium thermoautotrophicum (Marburg). This transient increase in the intracellular ATP content was stimulated five-fold by the addition of sodium ions, from about 2 nmol ATP/min × mg cells (dry weight) at 0.07 mM Na+ to about 10 nmol ATP/min × mg cells at 25 mM Na+.  相似文献   

12.
Abstract In water-in-oil microemulsion the membrane-associated F420-hydrogenase of Methanobacterium thermoautotrophicum (strain Marburg) and the membrane-bound hydrogenase of Alcaligenes eutrophus H 16 (MBH) showed prolonged activity at elevated temperatures (measured as hydrogen production) as compared to aqueous buffer solution. The temperature optimum of the reactions was about 15°C higher than in aqueous buffer solution. Activity of the almost completely inactivated F420-hydrogenase could be partially recovered by transfer into microemulsion.  相似文献   

13.
A plasmid in the archaebacterium Methanobacterium thermoautotrophicum   总被引:16,自引:0,他引:16  
The archaebacterium Methanobacterium thermoautotrophicum Marburg (DSM 2133) was found to contain a plasmid (pME2001) in covalently closed circular form. It was isolated by CsCl gradient centrifugation of total DNA in the presence of ethidium bromide. Multimers up to the hexamer were observed upon agarose gel electrophoresis and electron microscopy of a purified plasmid preparation. A restriction map was constructed. The length of plasmid pME2001 was determined to be approximately 4,500 bp. Southern hybridization of plasmid DNA to DNA extracted from Methanobacterium thermoautotrophicum delta H (DSM1053) revealed the presence of a plasmid with homologous sequences in the delta H strain.  相似文献   

14.
The virulent bacteriophage psi M1 of Methanobacterium thermoautotrophicum Marburg mediated transduction of a resistance marker and of three biosynthesis markers. Transductants were observed at frequencies of 6 x 10(-4) to 5 x 10(-6)/PFU.  相似文献   

15.
Comparison of the updated complete nucleotide sequences of the two related plasmids pME2001 and pME2200 from the thermophilic archaeon Methanothermobacter marburgensis (formerly Methanobacterium thermoautotrophicum) strains Marburg and ZH3, respectively, revealed an almost identical common backbone structure and five plasmid-specific inserted fragments (IFs), four of which are flanked by perfect or nearly perfect direct repeats 25-52 bp in length. A 4354-bp minimal replicon was derived from the alignment of the two plasmids, which encodes one putative antisense RNA related to replication control and five open reading frames (ORFs) organized in two operons. The first operon consists of four ORFs, the third of which, i.e. ORF3, contains a helix-turn-helix motif and a purine NTP-binding motif often found in proteins involved in DNA metabolic processes. The database search results suggest that ORF3 might function as a replication initiator protein. The large putative Rep protein encoded by pME2001 was overexpressed in Escherichia coli as an N-terminal His-tagged version using pET28a and a compatible helper plasmid that coexpresses minor tRNAs, argU and ileX to compensate for codon usage difference. ORFs 1, 2, and 3 are organized in a sequence reminiscent of that described in E. coli plasmids of the R1 family, cop-tap-rep. ORF6 encoded by IF1, one of the pME2200-specific elements, showed significant similarity to ORF6 encoded by archaeal phage psiM2 of M. marburgensis strain Marburg and may confer the apparent immunity of its host strain ZH3 to infection by phage psiM2. Our data indicate that M. marburgensis plasmids may evolve by a series of gene duplication and excision events.  相似文献   

16.
A novel hydrogenase has recently been found in methanogenic archaea. It catalyzes the reversible dehydrogenation of methylenetetrahydromethanopterin (CH2 = H4MPT) to methenyltetrahydromethanopterin (CH identical to H4MPT+) and H2 and was therefore named H2-forming methylenetetrahydromethanopterin dehydrogenase. The hydrogenase, which is composed of only one polypeptide with an apparent molecular mass of 43 kDa, does not mediate the reduction of viologen dyes with either H2 or CH2 = H4MPT. We report here that the purified enzyme from Methanobacterium thermoautotrophicum exhibits the following other unique properties: (a) the colorless protein with a specific activity of 2000 U/mg (Vmax) did not contain iron-sulfur clusters, nickel, or flavins; (b) the activity was not inhibited by carbon monoxide, acetylene, nitrite, cyanide, or azide; (c) the enzyme did not catalyze an isotopic exchange between 3H2 and 1H+; (d) the enzyme catalyzed the reduction of CH identical to H4MPT+ with 3H2 generating [methylene-3H]CH2 = H4MPT; and (e) the primary structure contained at most four conserved cysteines as revealed by a comparison of the DNA-deduced amino acid sequence of the proteins from M. thermoautotrophicum and Methanopyrus kandleri. None of the four cysteines were closely spaced as would be indicative for a (NiFe) hydrogenase or a ferredoxin-type iron-sulfur protein. Properties of the H2-forming methylenetetrahydromethanopterin dehydrogenase from Methanobacterium wolfei are also described indicating that the enzyme from this methanogenic archaeon is very similar to the enzyme from M. thermoautotrophicum with respect both to molecular and catalytic properties.  相似文献   

17.
A physical and genetic map of the chromosome of Methanobacterium wolfei was constructed by using pulsed-field gel electrophoresis of restriction fragments generated by digestion with NotI and NheI. The chromosome was found to be circular and 1,729 kb in size. Twenty-eight genes were mapped to specific restriction enzyme fragments by performing hybridization experiments with gene probes from various Methanobacterium strains. The genomic map obtained was compared with the updated genomic map of Methanobacterium thermoautotrophicum Marburg. In spite of major restriction pattern dissimilarities, the overall genetic organization seemed to be conserved between the genomes of the two strains. In addition, the two rRNA operons of strain Marburg were precisely mapped on the chromosome, and it was shown that they are transcribed in the same direction.  相似文献   

18.
19.
A variety of sulfur-containing compounds were investigated for use as medium reductants and sulfur sources for growth of four methanogenic bacteria. Sulfide (1 to 2 mM) served all methanogens investigated well. Methanococcus thermolithotrophicus and Methanobacterium thermoautotrophicum Marburg and delta H grew well with S0, SO3(2-), or thiosulfate as the sole sulfur source. Only Methanococcus thermolithotrophicus was able to grow with SO4(2-) as the sole sulfur source. 2-Mercaptoethanol at 20 mM was greatly inhibitory to growth of Methanococcus thermolithotrophicus on SO4(2-) or SO2(2-) and Methanobacterium thermoautotrophicum Marburg on SO3(2-) but not to growth of strain delta H on SO3(2-). Sulfite was metabolized during growth by Methanococcus thermolithotrophicus. Sulfide was produced in cultures of Methanococcus thermolithotrophicus growing on SO4(2-), SO3(2-), thiosulfate, and S0. Methanobacterium thermoautotrophicum Marburg was successfully grown in a 10-liter fermentor with S0, SO3(2-), or thiosulfate as the sole sulfur source.  相似文献   

20.
Assimilatory reduction of sulfate and sulfite by methanogenic bacteria   总被引:7,自引:0,他引:7  
A variety of sulfur-containing compounds were investigated for use as medium reductants and sulfur sources for growth of four methanogenic bacteria. Sulfide (1 to 2 mM) served all methanogens investigated well. Methanococcus thermolithotrophicus and Methanobacterium thermoautotrophicum Marburg and delta H grew well with S0, SO3(2-), or thiosulfate as the sole sulfur source. Only Methanococcus thermolithotrophicus was able to grow with SO4(2-) as the sole sulfur source. 2-Mercaptoethanol at 20 mM was greatly inhibitory to growth of Methanococcus thermolithotrophicus on SO4(2-) or SO2(2-) and Methanobacterium thermoautotrophicum Marburg on SO3(2-) but not to growth of strain delta H on SO3(2-). Sulfite was metabolized during growth by Methanococcus thermolithotrophicus. Sulfide was produced in cultures of Methanococcus thermolithotrophicus growing on SO4(2-), SO3(2-), thiosulfate, and S0. Methanobacterium thermoautotrophicum Marburg was successfully grown in a 10-liter fermentor with S0, SO3(2-), or thiosulfate as the sole sulfur source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号