首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have characterized a novel surface protein from urea extract of whole cells of group A Streptococcus pyogenes (GAS). A major protein band (35kD) was found to hybridize with human IgG by Western blotting. A search of the N-terminal amino acid sequence of this protein by using the GAS genome sequence database revealed an open reading frame that encoded a 38-kDa protein with a signal peptide sequence. We have named this protein streptococcal immunoglobulin-binding protein 35 (Sib35). It was found to be an anchorless protein with no LPXTG motif, distinct from the M protein superfamily exhibiting immunoglobulin-binding activity, and partially secreted in the culture supernatant. Recombinant Sib35 was also shown to bind human IgA and IgM. The sib35 gene was found in all GAS strains examined, but not in oral, group B, C, or G streptococcal strains. These results suggest that Sib35 is a unique immunoglobulin-binding protein in GAS.  相似文献   

2.
Human CD46 is a receptor for the M protein of group A streptococcus (GAS). The emm1 GAS strain GAS472 was isolated from a patient suffering from streptococcal toxic shock‐like syndrome. Human CD46‐expressing transgenic (Tg) mice developed necrotizing fasciitis associated with osteoclast‐mediated progressive and severe bone destruction in the hind paws 3 days after subcutaneous infection with 5 × 105 colony‐forming units of GAS472. GAS472 infection induced expression of the receptor activator of nuclear factor‐κB ligand (RANKL) while concomitantly reducing osteoprotegerin expression in the hind limb bones of CD46 Tg mice. Micro‐computed tomography analysis of the bones suggested that GAS472 infection induced local bone erosion and systemic bone loss in CD46 Tg mice. Because treatment with monoclonal antibodies (mAbs) against mouse CD4+ and CD8+ T lymphocytes did not inhibit osteoclastogenesis, T lymphocyte‐derived RANKL was not considered a major contributor to massive bone loss during GAS472 infection. However, immunohistochemical analysis of the hind limb bones showed that GAS472 infection stimulated RANKL production in various bone marrow cells, including fibroblast‐like cells. Treatment with a mAb against mouse RANKL significantly inhibited osteoclast formation and bone resorption. These data suggest that increased expression of RANKL in heterogeneous bone marrow cells provoked bone destruction during GAS infection.  相似文献   

3.
C57BL/6 mice immunized with the extracellular Ig-like domain of rat myelin oligodendrocyte glycoprotein (MOG) developed experimental autoimmune encephalomyelitis (EAE) resembling that induced by rodent MOG 35-55 in its B cell independence and predominantly mononuclear CNS infiltrate. In contrast, human MOG protein-induced EAE was B cell dependent with polymorphonuclear leukocytes. Human MOG differs from rat MOG at several residues, including a proline for serine substitution at position 42. Human MOG 35-55 was only weakly encephalitogenic, and a proline substitution in rat MOG at position 42 severely attenuated its encephalitogenicity. However, human MOG 35-55 was immunogenic, inducing proliferation and IFN-gamma and IL-13 to human, but not rodent MOG 35-55 [corrected]. The B cell dependence of EAE induced by human MOG protein was not due to a requirement for Ag presentation by B cells, because spleen cells from B cell-deficient mice processed and presented human and rat MOG proteins to T cells. The different pathogenic mechanisms of human and rat MOG proteins might result from different Abs induced by these proteins. However, rat and human MOG proteins induced Abs to mouse MOG that were equivalent in titer and IgG subclass. These data demonstrate that EAE can be induced in C57BL/6 mice by two mechanisms, depending on the nature of the immunogen: an encephalitogenic T cell response to rat MOG or rodent MOG 35-55, or an encephalitogenic B cell response to epitopes on human MOG protein that most likely cross-react with mouse determinants.  相似文献   

4.
Chronic non-bacterial prostatitis (CNP) is a common urologic disease that is linked to the development of prostate cancer. Long non-coding RNA (lncRNA) GAS5 has been identified to mediate cell proliferation in prostate cancer, although its role in CNP is still unclear. Human prostate epithelial cell line RWPE-1 was induced by lipopolysaccharide (LPS) to mimic CNP model in vitro. Real-time PCR was performed to determine the expression of GAS5 and COX-2, while western blotting was used to evaluate the protein expression of COX-2. The interaction between GAS5 and COX-2 was determined using RNA pull-down and RNA immunoprecipitation (RIP). Cell proliferation was determined using MTT assay. The expression of GAS5 was decreased, while COX-2 was increased in prostatitis tissues and in LPS-induced RWPE-1 cells. The overexpression of GAS5 suppressed the protein level of COX-2, and inhibited cell proliferation of LPS-induced RWPE-1 cells and HPECs, which was rescued by the co-transfection with pcDNA-GAS5 and pcDNA-COX-2. GAS5 was confirmed to promote the ubiquitination of COX-2, and the in vivo GAS5-overexpressed CNP rat model decreased the motor scores, the volume of prostate tissues, the average number of inflammatory cells, prostatic proliferation, and COX-2 expression. Our findings revealed that overexpression of GAS5 inhibited cell proliferation via negatively regulating the expression of COX-2, thus alleviating the progression of CNP.  相似文献   

5.
Endothelial progenitor cells (EPCs) have been reported to replace the damaged endothelial cells to repair the injured or dead endothelium. However, EPC senescence might lead to the failure in EPC function. Thus, developing an in-depth understanding of the mechanism of EPC senescence might provide novel strategies for related vascular disorders’ treatments. Herein, nicotinamide phosphoribosyltransferase (NAMPT) overexpression could increase cell proliferation and suppress cell senescence in EPCs. miR-223 directly bound to the 3′-untranslated region of NAMPT to inhibit its expression, therefore modulating EPC proliferation and senescence through NAMPT and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling. Long noncoding RNA (lncRNA) GAS5 sponges miR-223, consequently downregulating miR-223 expression. GAS5 knockdown inhibited EPC proliferation and promoted senescence. GAS5 might serve as a competing endogenous RNA for miR-223 to counteract miR-223-mediated suppression on NAMPT, thus regulating EPC proliferation and senescence via the PI3K/AKT signaling pathway. In summary, our findings provide a solid experimental basis for understanding the role and mechanism of lncRNA GAS5/miR-223/NAMPT axis in EPC proliferation and senescence.  相似文献   

6.
Aims: To investigate the effect of a water‐soluble Melaleuca alternifolia concentrate (MAC) on group A streptococcus (GAS; Streptococcus pyogenes)‐induced necrotizing fasciitis. Methods and Results: MAC pretreatment (1% and 2% v/v) was able to protect mice from GAS infection in an air pouch model. GAS‐induced mouse death and skin injury were inhibited dose dependently by MAC. Administration of MAC at 6 h post‐GAS infection partially delayed mouse death. Surveys of the exudates of the air pouch of MAC‐treated mice revealed that the survival of infiltrating cells was prolonged, the bacteria were eliminated, and the production of inflammatory cytokines was inhibited. MAC could directly inhibit the growth of GAS in vitro, and the minimal inhibitory concentration (MIC) of MAC for GAS was determined as 0·05% v/v using the time‐kill assay. Furthermore, a sub‐MIC dose of MAC not only enhanced the bactericidal activity of RAW264.7 macrophage cells against GAS but also increased susceptibility of GAS for blood clearance. Conclusions: These results suggest that MAC may inhibit GAS‐induced skin damage and mouse death by directly inhibiting GAS growth and enhancing the bactericidal activity of macrophages. Significance and Impact of the Study: Our results provide scientific data on the use of MAC for the treatment of GAS‐induced necrotizing fasciitis in the murine model.  相似文献   

7.
8.
We have previously demonstrated that activation of protein kinase C (PKC) by phorbol esters induces selectively IgA synthesis by mouse B cells. In this study, we investigated the effects of a number of protein kinase inhibitors on IgA secretion induced by a recombinant murine IL-5 in LPS-stimulated mouse B cells. The results show that PKC inhibitors, such as sphingosine (SPH), staurosporine (STP) and H-7, blocked IL-5-induced IgA synthesis; the protein kinase A inhibitor HA-1004 and the inhibitor of calcium/calmodulin dependent protein kinase W-7 had no effect on IgA secretion induced by IL-5. The proliferation of the IL-5 sensitive B13 cell line in response to IL-5 was also inhibited by addition of SPH or STP or H-7. The data suggest an involvement of the PKC pathway in IL-5-induced B cell differentiation into IgA secreting cells.  相似文献   

9.
10.
11.
Entry of group A streptococcus (GAS) into cells has been suggested as an important trait in GAS pathogenicity. Protein F1, a fibronectin (Fn) binding protein, mediates GAS adherence to cells and the extracellular matrix, and efficient cell internalization. We demonstrate that the cellular receptors responsible for protein F1-mediated internalization of GAS are integrins capable of Fn binding. In HeLa cells, bacterial entry is blocked by anti-β1 integrin monoclonal antibody. In the mouse cell line GD25, a β1 null mutant, the αvβ3 integrin promotes GAS entry. Internalization of these cells by GAS is blocked by a peptide that specifically binds to αvβ3 integrin. In both cell lines, entry of GAS requires the occupancy of protein F1 by Fn. Neither the 29 kDa nor the 70 kDa N-terminal fragments or the 120 kDa cell-binding fragment of Fn promote bacterial entry. Fn-coated beads are taken up efficiently by HeLa cells. Both the entry of GAS via protein F1 and the uptake of Fn-coated beads are blocked by anti-β1 antibody but are unaffected by a large excess of soluble Fn. Internalization of HeLa cells by bacteria bearing increasing amounts of prebound Fn to protein F1 reveals a sigmoidal ultrasensitive curve. These suggest that the ability of particles to interact via Fn with multiple integrin sites plays a central role in their ability to enter cells.  相似文献   

12.
Kuan YC  Wu TJ  Kuo CY  Hsu JC  Chang WY  Sheu F 《PloS one》2011,6(6):e21004
An immunomodulatory protein (IPAF) was purified and cloned from Anoectochilus formosanus, an Orchidaceae herbal plant in Asia. The major targeting immune cells of IPAF and its modulating effects toward B lymphocytes were investigated. Rapid amplification of cDNA ends (RACE) was conducted to clone the IPAF gene, and the obtained sequence was BLAST compared on the NCBI database. MACS-purified mouse T and B lymphocytes were stimulated with IPAF and the cell proliferation, activation, and Igs production were examined. IPAF comprised a 25 amino acids signal peptide and a 138 amino acids protein which was homologous to the lectins from Orchidaceae plant. IPAF selectively induced the cell proliferation in mouse splenic B lymphocytes but not T lymphocytes. The IPAF-induced B cells exhibited increased CD69 and MHC class II expression, and a dose- and time-dependent enhancement in IgM production. These results suggested potential benefits of IPAF to strengthen the humoral immunity.  相似文献   

13.
14.
15.
16.
Interleukin‐35 (IL‐35), a member of the IL‐12 family, functions as a new anti‐inflammatory factor involved in arthritis, psoriasis, inflammatory bowel disease (IBD) and other immune diseases. Although IL‐35 can significantly prevent the development of inflammation in many diseases, there have been no early studies accounting for the role of IL‐35 recombinant protein in IBD and psoriasis. In this study, we assessed the therapeutic potential of IL‐35 recombinant protein in three well‐known mouse models: the dextransulfate sodium (DSS)‐induced colitis mouse model, the keratin14 (K14)‐vascular endothelial growth factor A (VEGF‐A)‐transgenic (Tg) psoriasis mouse model and the imiquimod (IMQ)‐induced psoriasis mouse model. Our results indicated that IL‐35 recombinant protein can slow down the pathologic process in DSS‐induced acute colitis mouse model by decreasing the infiltrations of macrophages, CD4+T and CD8+T cells and by promoting the infiltration of Treg cells. Further analysis demonstrated that IL‐35 recombinant protein may regulate inflammation through promoting the secretion of IL‐10 and inhibiting the expression of pro‐inflammatory cytokines such as IL‐6, TNF‐α and IL‐17 in acute colitis model. In addition, lower dose of IL‐35 recombinant protein could achieve long‐term treatment effects as TNF‐α monoclonal antibody did in the psoriasis mouse. In summary, the remarkable therapeutic effects of IL‐35 recombinant protein in acute colitis and psoriasis mouse models indicated that IL‐35 recombinant protein had a variety of anti‐inflammatory effects and was expected to become an effective candidate drug for the treatment of inflammatory diseases.  相似文献   

17.
18.
Group A Streptococcus pyogenes (GAS) is an important human pathogen that frequently causes pharyngitis. GAS organisms can adhere to and invade pharyngeal epithelial cells, which are overlaid by salivary components. However, the role of salivary components in GAS adhesion to pharyngeal cells has not been reported precisely. We collected human saliva and purified various salivary components, including proline-rich protein (PRP), statherin, and amylase, and performed invasion assays. The GAS-HEp-2 association ratio (invasion/adhesion ratio) and invasion ratio of GAS were increased significantly with whole human saliva and PRP, while the anti-PRP antibody inhibited the latter. GAS strain NY-5, which lacks M and F proteins on the cell surface, was promoted to cohere with HEp-2 cells by whole human saliva and PRP. The 28-kDa protein of GAS bound to PRP and was identified as GrpE, a chaperone protein, whereas the N-terminal of GrpE was found to bind to PRP. A GrpE-deficient mutant of GAS strain B514Sm, TR-45, exhibited a reduced ability to adhere to and invade HEp-2 cells. Microscopic observations showed the GrpE was mainly expressed on the surface of the cell division site of GAS. Furthermore, GrpE-deficient mutants of GAS and Streptococcus pneumoniae showed an elongated morphology as compared with the wild type. Taken together, this is the first study to show an interaction between salivary PRP and GAS GrpE, which plays an important role in GAS infection on the pharynx, whereas the expression of GrpE on the surface of GAS helps to maintain morphology.  相似文献   

19.
MicroRNAs (miRNAs) are fundamental regulators of cell proliferation, differentiation, and apoptosis, and are implicated in tumorigenesis of many cancers. MiR-34a is best known as a tumor suppressor through repression of growth factors and oncogenes. Growth arrest specific1 (GAS1) protein is a tumor suppressor that inhibits cancer cell proliferation and induces apoptosis through inhibition of RET receptor tyrosine kinase. Both miR-34a and GAS1 are frequently down-regulated in various tumors. However, it has been reported that while GAS1 is down-regulated in papillary thyroid carcinoma (PTC), miR-34a is up-regulated in this specific type of cancer, although their potential roles in PTC tumorigenesis have not been examined to date. A computational search revealed that miR-34a putatively binds to the 3′-UTR of GAS1 gene. In the present study, we confirmed previous findings that miR-34a is up-regulated and GAS1 down-regulated in PTC tissues. Further studies indicated that GAS1 is directly targeted by miR-34a. Overexpression of miR-34a promoted PTC cell proliferation and colony formation and inhibited apoptosis, whereas knockdown of miR-34a showed the opposite effects. Silencing of GAS1 had similar growth-promoting effects as overexpression of miR-34a. Furthermore, miR-34a overexpression led to activation of PI3K/Akt/Bad signaling pathway in PTC cells, and depletion of Akt reversed the pro-growth, anti-apoptotic effects of miR-34a. Taken together, our results demonstrate that miR-34a regulates GAS1 expression to promote proliferation and suppress apoptosis in PTC cells via PI3K/Akt/Bad pathway. MiR-34a functions as an oncogene in PTC.  相似文献   

20.
Growth arrest specific 1 (GAS1) is a pleiotropic protein that induces apoptosis and cell arrest in different tumors, but it is also involved in the development of the nervous system and other tissues and organs. This dual ability is likely caused by its capacity to interact both by inhibiting the intracellular signaling cascade induced by glial cell-line derived neurotrophic factor and by facilitating the activity of the sonic hedgehog pathway. The presence of GAS1 mRNA has been described in adult mouse brain, and here we corroborated this observation. We then proceeded to determine the distribution of the protein in the adult central nervous system (CNS). We detected, by western blot analysis, expression of GAS1 in olfactory bulb, caudate-putamen, cerebral cortex, hippocampus, mesencephalon, medulla oblongata, cerebellum, and cervical spinal cord. To more carefully map the expression of GAS1, we performed double-label immunohistochemistry and noticed expression of GAS1 in neurons in all brain areas examined. We also observed expression of GAS1 in astroglial cells, albeit the pattern of expression was more restricted than that seen in neurons. Briefly, in the present article, we report the widespread distribution and cellular localization of the GAS1 native protein in adult mammalian CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号