首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A lipoprotein lipase (LPL) was made water insoluble by immobilizing onto the surface of polyacrolein (PAA) microspheres with and without oligoglycines as spacer. The activity of the immobilized LPL was found to remain high toward a small ester substrate, p-nitrophenyl laurate (pNPL). The relative activity of the immobilized LPL without spacer decreased gradually with the decreasing surface concentration of the immobilized LPL on the PAA microsphere. On the contrary, the immobilized LPL with oligoglycine spacers gave an almost constant activity for the substrate hydrolysis within the surface concentration region studied and gave a much higher relative activity than that without any spacer. The Michaelis constant K(m) and the maximum reaction velocity V(m) were estimated for the free and the immobilized LPL. The apparent K(m) was larger for the immobilized LPL than for the free one, while V(m) was smaller for the immobilized LPL. The pH, thermal, and storage stabilities of the immobilized LPL were higher than those of the free one. The initial enzymatic activity of the immobilized LPL maintained almost unchanged without any leakage and inactivation of LPL when the batch enzyme reaction was performed repeatedly, indicating the excellent durability of the immobilized LPL.  相似文献   

2.
Horseradish peroxidase (HRP) and soybean peroxidase (SBP) were covalently immobilized onto aldehyde glass through their amine groups. The activity yield and the protein content for the immobilized SBP were higher than for the immobilized HRP. When free and immobilized peroxidases were tested for their ability to remove 4-chlorophenol from aqueous solutions, the removal percentages were higher with immobilized HRP than with free HRP, whereas immobilized SBP needs more enzyme to reach the same conversion than free enzyme. In the present paper the two immobilized derivatives are compared. It was found that at an immobilized enzyme concentration in the reactor of 15 mg l(-1), SBP removed 5% more of 4-chlorophenol than HRP, and that a shorter treatment was necessary. Since immobilized SBP was less susceptible to inactivation than HRP and provided higher 4-chlorophenol elimination, this derivative was chosen for further inactivation studies. The protective effect of the immobilization against the enzyme inactivation by hydrogen peroxide was demonstrated.  相似文献   

3.
The effect of reduced oxygen supply on the production of a recombinant protein (plasmid-encoded beta-galactosidase) was investigated in Escherichia coli. A novel modified bubble tank reactor was used to provide a direct comparison between immobilized and suspended cells in identical environments except for the immobilization matrix. Decreased oxygen supply led to increased beta-galactosidase synthesis by both immobilized and suspended cells. Immobilized cells produced similar amounts of beta-galactosidase as the suspended cells. Lactose consumption and acetate production, on a per cell basis, were significantly higher in immobilized cells, suggesting that immobilized cells utilized fermentative metabolism. However, a transport analysis of the immobilized cell system showed that immobilized cells were not subject to either external or internal mass transfer gradients.  相似文献   

4.
1. Glucose oxidase (EC 1.1.3.4), amyloglucosidase (EC 3.2.1.3), invertase (EC 3.2.1.26) and beta-galactosidase (EC 3.2.1.23) were covalently attached via glutaraldehyde to the inside surface of nylon tube. 2. The linked enzyme system, comprising invertase immobilized within a nylon tube acting in series with glucose oxidase immobilized in a similar way, was used for the automated determination of sucrose. 3. The linked enzyme system, comprising beta-galactosidase immobilized within a nylon tube acting in series with glucose oxidase immobilized in a similar way, was used for the automated determination of lactose. 4. The linked enzyme system, comprising amyloglucosidase immobilized within a nylon tube acting in series with glucose oxidase immobilized in a similar way, was used for the automated determination of maltose. 5. Mixtures of glucose oxidase and amyloglucosidase were immobilized within the same piece of nylon tube and used for the automated determination of maltose. 6. Mixtures of glucose oxidase and invertase were immobilized within the same piece of nylon tube and used for the automated determination of sucrose.  相似文献   

5.
Amyloglucosidase was immobilized on a copolymer of methyl methacrylate and 2-dimethylaminoethyl methacrylate. The resulting immobilized amyloglucosidase has 19% of the soluble enzyme specific activity. The pH optimum of immobilized amyloglucosidase is shifted towards acidity by 1.9 units. The temperature optimum of immobilized enzyme is shifted upward by 5°C. The immobilized amyloglucosidase has the maximum stability at pH 4.6, whereas the soluble enzyme has maximum stability at pH 5.5. While soluble amyloglucosidase has a maximum thermal stability at 50°C, the stability of the immobilized amyloglucosidase steadily decreases with the increase in temperature.  相似文献   

6.
Catalase was immobilized on the chitosan film that is a natural polymer. Studies were done on free catalase and immobilized catalase on chitosan film concerning the determination of optimum temperature, optimum pH, thermal stability, storage stability, operational stability, and kinetic parameters. It was determined that optimum temperature for free catalase and immobilized catalase on chitosan film is 25 degrees C, and optimum pH is 7.0. It was found as K(m) = 25.16 mM, V(max) = 24042 μmole/min mg protein for free catalase, K(m) = 27.67 mM, V(max) = 1022 μmole/min mg protein for immobilized catalase on chitosan. It was observed that there was a big difference between V(max) value of the free catalase and V(max) value of immobilized catalase on chitosan film whereas there were minor changes in the value of K(m) for free catalase and immobilized catalase. It was found that storage stability at 5 degrees C for immobilized catalase stored wet is greater than free catalase and immobilized catalase stored dry, and immobilized catalase showed a operational stability.  相似文献   

7.
B. subtilis α-amylase was immobilized on cyanogen bromide activated carboxymethyl cellulose. The conversion of wheat starchwas carried out at 72°C in a stirred tank by soluble and immobilized α-amylase. The initial reaction rate with immobilized α-amylase was lower than with the soluble enzyme, but after 1 hr immobilized α-amylase produced a higher quantity of reducing sugars than the soluble enzyme. The action pattern of immobilized α-amylase was different from that of the soluble enzyme: immobilized α-amylase produced relatively more glucose and maltose, except at the beginning of conversion. Immobilized α- readily hydrolyze G6. The starch conversion by immobilized α-amylase was not diffusion controlled at a stirring rate of 100-300 rpm.  相似文献   

8.
In order to produce a product with a high content of maltotetraose, dual-enzyme systems composed of immobilized maltotetraose-forming amylase (G(4)-forming amylase) and pullulanase were studied. The thermostability of individually immobilized enzymes was examined in continuous operation; studies revealed that the enzyme immobilized on "Chitopearl" was much more stable than that immobilized on Diaion HP-50. The effects of operating conditions on the stability of G(4) forming amylase immobilized on "Chitopearl" were examined to confirm that the apparent half-life data could be arranged using the immobilized enzyme stability factor, f(s). As for the dual immobilized enzyme system, six methods of usage were considered, with five yielding a 7-10% (w/w) higher content of maltotetraose product than the single-enzyme system. The effects of operating conditions on the maltotetraose production reaction were examined to confirm that the maltotetraose content of the products could be analyzed using the specific space velocity,SSV. In dual immobilized enzyme systems, pullulanase immobilized on the same carrier as the G(4)-forming amylase was found to be more stable than pullulanase immobilized on separate carriers. The effectiveness of using immobilized pullulanase along with the G(4)-forming amylase was confirmed from constant-conversion operations in which the maltotetraose content in the product was kept at 50% (w/w) in laboratory-scale experimentation.  相似文献   

9.
Summary Biotransformation of daunomycinone into 13-dihydrodaunomycinone was performed using immobilized cells, immobilized cell homogenate and immobilized enzymes, extract of the microorganism Streptomyces aureofaciens B-96. The whole cells and the homogenate were incorporated into a gelatine matrix by cross-linking with glutaraldehyde, while the enzyme extract was immobilized on modified bead cellulose. The highest level of conversion of daunomycinone into 13-dihydrodaunomycinone was achieved with the immobilized enzyme extract.  相似文献   

10.
Alpha-galactosidase was immobilized in a mixture of k-carrageenan and locust bean gum. The properties of the free and immobilized enzyme were then determined. The optimum pH for both the soluble and immobilized enzyme was 4.8. The optimum temperature for the soluble enzymes was 50 degrees C, whereas that for the immobilized enzyme was 55 degrees C. The immobilized enzyme was used in batch, repeated batch, and continuous modes to degrade the raffinose-family sugars present in soymilk. Two hours of incubation with the free and immobilized alpha-galactosidases resulted in an 80% and 68% reduction in the raffinose oligosaccharides in the soymilk, respectively. In the repeated batch, a 73% reduction was obtained in the fourth cycle. A fluidized bed reactor was also designed to treat soymilk continuously and the performance of the immobilized alpha-galactosidase tested at different flow rates, resulting in a 90% reduction of raffinose-family oligosaccharides in the soymilk at a flow rate 40 ml/h. Therefore, the present study demonstrated that immobilized alpha-galactosidase in a continuous mode is efficient for reducing the oligosaccharides present in soymilk, which may be of considerable interest for industrial application.  相似文献   

11.
Xanthine dehydrogenase (EC 1.2.1.37) was isolated from chicken livers and immobilized by adsorption to a Sepharose derivative, prepared by reaction of n-octylamine with CNBr-activated Sepharose 4B. Using a crude preparation of enzyme for immobilization it was observed that relatively more activity was adsorbed than protein, but the yield of immobilized activity increased as a purer enzyme preparation was used. As more activity and protein were bound, relatively less immobilized activity was recovered. This effect was probably due to blocking of active xanthine dehydrogenase by protein impurities. The kinetics of free and immobilized xanthine dehydrogenase were studied in the pH range 7.5-9.1. The Km and V values estimated for free xanthine dehydrogenase increase as the pH increase; the K'm and V values for the immobilized enzyme go through a minimum at pH 8.1. By varying the amount of enzyme activity bound per unit volume of gel, it was shown that K'm is larger than Km are result of substrate diffusion limitation in the pores of the support material. Both free and immobilized xanthine dehydrogenase showed substrate activation at low concentrations (up to 2 microM xanthine). Immobilized xanthine dehydrogenase was more stable than the free enzyme during storage in the temperature range of 4-50 degrees C. The operational stability of immobilized xanthine dehydrogenase at 30 degrees C was two orders of magnitude smaller than the storage stability, t 1/2 was 9 and 800 hr, respectively. The operational stability was, however, better than than of immobilized milk xanthine oxidase (t 1/2 = 1 hr). In addition, the amount of product formed per unit initial activity in one half-life, was higher for immobilized xanthine dehydrogenase than for immobilized xanthine oxidase. Unless immobilized milk xanthine oxidase can be considerable stabilized, immobilized chicken liver xanthine dehydrogenase is more promising for application in organic synthesis.  相似文献   

12.
Tyrosinase was immobilized on glutaraldehyde crosslinked chitosan-clay composite beads and used for phenol removal. Immobilization yield, loading efficiency and activity of tyrosinase immobilized beads were found as 67%, 25% and 1400 U/g beads respectively. Optimum pH of the free and immobilized enzyme was found as pH 7.0. Optimum temperature of the free and immobilized enzyme was determined as 25-30 °C and 25 °C respectively. The kinetic parameters of free and immobilized tyrosinase were calculated using l-catechol as a substrate and K(m) value for free and immobilized tyrosinase were found as 0.93 mM and 1.7 mM respectively. After seven times of repeated tests, each over 150 min, the efficiency of phenol removal using same immobilized tyrosinase beads were decreased to 43%.  相似文献   

13.
Glucose oxidase from Aspergillus niger was immobilized on nonporous glass beads by covalent bonding and its kinetics were studied in a packed-column recycle reactor. The optimum pH of the immobilized enzyme was the same as that of soluble enzyme; however, immobilized glucose oxidase showed a sharper pH-activity profile than that of the soluble enzyme. The kinetic behavior of immobilized glucose oxidase at optimum pH and 25 degrees C was similar to that of the soluble enzyme, but the immobilized material showed increased temperature sensitivity. Immobilized glucose oxidase showed no loss in activity on storage at 4 degrees C for nearly ten weeks. On continuous use for 60 hr, the immobilized enzyme showed about a 40% loss in activity but no change in the kinetic constant.  相似文献   

14.
Trypsin and alpha-chymotrypsin were immobilized to alumina-phosphocolamine complex, activated by glutaraldehyde. The immobilized enzymes show a great stability toward organic solvents miscible or immiscible with water. In the presence of a low concentration of water, the immobilized enzymes catalyzed transesterification reactions as well as peptide synthesis. The synthesized peptides were stable toward the immobilized enzymes.  相似文献   

15.
This study examined the capacity of immobilized bacteria to degrade petroleum hydrocarbons. A mixture of hydrocarbon-degrading bacterial strains was immobilized in alginate and incubated in crude oil-contaminated artificial seawater (ASW). Analysis of hydrocarbon residues following a 30-day incubation period demonstrated that the biodegradation capacity of the microorganisms was not compromised by the immobilization. Removal of n-alkanes was similar in immobilized cells and control cells. To test reusability, the immobilized bacteria were incubated for sequential increments of 30 days. No decline in biodegradation capacity of the immobilized consortium of bacterial cells was noted over its repeated use. We conclude that immobilized hydrocarbon-degrading bacteria represent a promising application in the bioremediation of hydrocarbon-contaminated areas.  相似文献   

16.
Zymomonas mobilis B-69 147, an ethanol-producing bacterium, was immobilized in photo-crosslinkable resin gels to form a biocatalyst system. Continuous ethanol fermentation with this immobilized Zymomonas was carried out in molasses and compared to that with immobilized yeast. As a result of operating this process for two weeks, a productivity of 60 g/l·h based on immobilized gel was obtained with improvement in the poor tolerance to salts of Zymomonas. The productivity of immobilized Z. mobilis was superior to that of immobilized yeast.  相似文献   

17.
The suitability of hornblende as a support for immobilized β-fructofuranosidase (invertase) was studied, with regard to the physical stability of the support and the thermal and operational stability of the immobilized enzyme. Hornblende was more stable than Enzacryl-Alo or Enzacryl-TIO, and marginally more stable than porous glass. Invertase immobilized on hornblende was more stable during long-term operation than invertase immobilized on porous glass. An active preparation of immobilized invertase was obtained also on pyroxene particles.  相似文献   

18.
Reactive continuous rods of macroporous poly(glycidyl methacrylate-co-ethylene dimethacrylate) were prepared within the confines of a stainless steel column. Then papain was immobilized on these monoliths either directly or linked by a spacer arm. In a further step, a protein A affinity column was used for the characterization of the digestion products of human immunoglobulin G (IgG) by papain. The results showed that papain immobilized on the monolithic rod through a spacer arm exhibits higher activity for the digestion of human IgG than that without a spacer arm. The apparent Michaelis-Menten kinetic constants of free and immobilized papain, K(m) and V(max), were determined. The digestion conditions of human IgG with free and immobilized papain were optimized. Comparison of the thermal stability of free and immobilized papain showed that the immobilized papain exhibited higher thermal stability than the free enzyme. The half-time of immobilized papain reaches about a week under optimum pH and temperature conditions.  相似文献   

19.
An interaction of vitamin D-binding protein to immobilized Cibacron Blue F3-GA was studied under urea containing buffers. In these buffers, this protein was adsorbed to the immobilized dye and was eluted with salt gradients as in the same buffer without urea. The protein was also adsorbed to immobilized diethylaminoethyl but not to immobilized carboxymethyl. It is implicated that a combination of pseudo-ligand affinity and/or hydrogen bonding interaction plays a large role whereas ionic, hydrophobic and lipophilic interactions act little between the protein and the immobilized blue dye.  相似文献   

20.
A partially purified enzymic extract from Phaeodactylum tricornutum was immobilized on silica gel and the specific activity of chlorophyllase in its free and immobilized states were compared in a ternary micellar system. The storage stability of the free and immobilized chlorophyllase extracts, maintained at temperatures ranging from 4 to 35°C for a period of 0–20 h, was temperature-dependent. The results also showed that the specific activity of the free and immobilized chlorophyllase extracts was highest at 30°C for long-term incubation, using chlorophyll and pheophytin as substrates and that a three-fold increase in the specific activity of the immobilized chlorophyllase was observed in comparison to that obtained with the free counterpart. The findings indicated that when free and immobilized chlorophyllase extracts were recovered and reused with both substrates, the immobilized chlorophyllase extract could be recycled for longer periods of time, while the free enzyme extract showed no activity after the first cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号