首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genotoxic potential of mainstream whole smoke (MWS) from cigarettes which heat tobacco (TEST) was compared to the genotoxic potential of MWS from a cigarette which burns tobacco (REFERENCE). MWS was collected from a University of Kentucky 1R4F cigarette (REFERENCE) and two, TEST cigarettes, one with regular flavor and the other with menthol flavor. All cigarettes were smoked on a smoking machine and the particulate phase was collected on Cambridge filter pads. The vapor phase, which passed through the pad, was bubbled into a dimethyl sulfoxide (DMSO) trap. The filter pad was extracted with the DMSO in the trap and additional DMSO to obtain MWS. MWS representing an identical number of cigarettes was tested to make a per-cigarette comparison of their genotoxic potential. REFERENCE MWS was mutagenic and cytotoxic in the Ames assay in the presence of metabolic activation while it was cytotoxic but not mutagenic in the absence of metabolic activation. Statistically significant increases in frequency of both sister-chromatid exchanges and chromosomal aberrations were observed in Chinese hamster ovary cells exposed to REFERENCE MWS with and without metabolic activation. MWS from the TEST cigarettes, with either regular or menthol flavor, was neither cytotoxic nor mutagenic in any of these assays. In summary, MWS from the 2 TEST cigarettes was neither genotoxic nor cytotoxic under conditions where MWS from the REFERENCE cigarettes was genotoxic and/or cytotoxic in a concentration-dependent manner.  相似文献   

2.
The results of in vitro genetic toxicology studies of sidestream cigarette smoke (SSCS) from cigarettes which heat but do not burn tobacco were compared to those of sidestream smoke from cigarettes which burn tobacco. SSCSs from 5 cigarettes were compared. Three of the cigarettes, the Kentucky reference research cigarette (1R4F), a commercially available ultra-low-tar brand (ULT) and a commercially available ultra-low-tar menthol brand (ULT-menthol) burn tobacco while two of the cigarettes, a regular (TEST) and a menthol (TEST-menthol) heat tobacco. SSCSs from all cigarettes were prepared by identical techniques, which involved collecting sidestream smoke particulate matter on Cambridge filter pads and combining the particulate matter with the vapor-phase materials collected by bubbling the smoke exiting the Cambridge pad through DMSO. The SSCSs obtained (equivalent to 0.4 cigarettes/ml DMSO) were evaluated at identical concentrations in an in vitro genetic toxicology test battery. SSCS from 1R4F, ULT and ULT-menthol cigarettes produced positive results in Ames bacterial strains TA98, TA100, TA1537 and TA1538 in the presence of metabolic activation (S9 from Aroclor-induced rat liver) but negative results in strain TA1535. In the absence of metabolic activation, 1R4F, ULT and ULT-menthol SSCSs were not significantly mutagenic. TEST and TEST-menthol SSCSs produced negative results in all 5 bacterial strains, both with and without metabolic activation. SSCS from 1R4F, ULT and ULT-menthol cigarettes produced positive results in the CHO chromosomal aberration assay and in the CHO sister-chromatid exchange assay both with and without metabolic activation while TEST and TEST-menthol SSCSs produced negative results in both assays, either with or without metabolic activation. The SSCSs from 1R4F, ULT and ULT-menthol cigarettes were weakly positive in inducing DNA repair in cultured rat hepatocytes while TEST and TEST-menthol SSCSs were negative in this assay. All 5 SSCSs were nonmutagenic in the CHO-HGPRT assay both with and without metabolic activation. SSCSs from the 1R4F, ULT and ULT-menthol cigarettes were cytotoxic in the CHO-HGPRT assay, both with and without metabolic activation, while TEST and TEST-menthol SSCSs were not cytotoxic under either condition. These results demonstrate that sidestream smoke from cigarettes which heat but do not burn tobacco (TEST and TEST-menthol) was neither genotoxic nor cytotoxic under conditions where sidestream smoke from cigarettes which burn tobacco (1R4F, ULT and ULT-menthol) was genotoxic and/or cytotoxic in a concentration-dependent manner.  相似文献   

3.
The genotoxic effects of 90-day nose-only exposures to smoke from new cigarettes, which heat but do not burn tobacco (New), or from reference cigarettes, which burn tobacco, were evaluated in Sprague-Dawley rats by examining the cytogenetic endpoints of sister-chromatid exchanges (SCE), chromosome aberrations, and micronuclei in bone-marrow cells. The concentrations of wet total particulate matter (WTPM) and carbon monoxide in the smoke from both cigarette types were similar. The mainstream smoke from both New and reference cigarettes was adjusted to WTPM concentrations of approx. 200 and 400 μg/1 for low and high smoke exposure. Rats were exposed to smoke 1 h per day, 5 days per week for 13 consecutive weeks. Inhalation of smoke by the exposed animals was confirmed by analysis of blood carboxyhemoglobin and plasma nicotine. Examination of bone-marrow cells following the final day of exposure showed that smoke from neither the New nor reference cigarette induced a positive response in the SCE, chromosome aberration, or micronucleus assays in rats.  相似文献   

4.
Glutathione (GSH) is a ubiquitous, redox-active, small molecule that is critical to cellular and organism health. In red blood cells (RBCs), the influence of the environment (e.g., diet and lifestyle) on GSH levels has been demonstrated in numerous studies. However, it remains unknown if levels of GSH are determined principally by environmental factors or if there is a genetic component, i.e., heritability. To investigate this we conducted a twin study. Twin studies are performed by comparing the similarity in phenotypes between mono- and dizygotic twin pairs. We determined the heritability of GSH, as well as its oxidation product glutathione disulfide (GSSG), the sum of GSH equivalents (tGSH), and the status of the GSSG/2GSH couple (marker of oxidation status, Ehc) in RBCs. In our study population we found that the estimated heritability for the intracellular concentration of GSH in RBCs was 57 %; for GSSG it was 51 %, tGSH 63 %, and Ehc 70 %. We conclude that a major portion of the phenotype of these traits is controlled genetically. We anticipate that these heritabilities will also be reflected in other cell types. The discovery that genetics plays a major role in the innate levels of redox-active species in RBCs is paradigm shifting and opens new avenues of research in the field of redox biology. Inherited RBC antioxidant levels may be important disease modifiers. By identifying the relative contributions of genes and the environment to antioxidant variation between individuals, new therapeutic strategies can be developed. Understanding the genetic determinants of these inherited traits may allow personalized approaches to relevant therapies.  相似文献   

5.
Reduced glutathione (GSH) inhibited catalase activity in a dose-dependent manner. DL-dithiothreitol (DL-DTT) and dithioerythritol (DTE) also inhibited catalase activity. The inhibition of catalase by GSH and DL-DTT could be reduced by NADPH. Polyacrilamide gel electrophoresis demonstrated the inhibition was partially reversible. The inhibition of catalase by GSH appeared to be partly due to superoxide radicals, since it was inhibited by active manganese superoxide dismutase, but not by heat-inactivated enzyme. Other chemical species also appear to take part in the inhibition, but they could not be identified.  相似文献   

6.
Abstract

The underlying mechanism of the central nervous system (CNS) injury after acute carbon monoxide (CO) poisoning is interlaced with multiple factors including apoptosis, abnormal inflammatory responses, hypoxia, and ischemia/reperfusion-like problems. One of the current hypotheses with regard to the molecular mechanism of CO poisoning is the oxidative injury induced by reactive oxygen species, free radicals, and neuronal nitric oxide. Up to now, the relevant mechanism of this injury remains poorly understood. The weakening of antioxidant systems and the increase of lipid peroxidation in the CNS have been implicated, however. Accordingly, in this review, we will highlight the relationship between oxidative stress and CO poisoning from the perspective of forensic toxicology and molecular toxicology.  相似文献   

7.
Peroxiredoxin-2 (Prx2), a typical two-cysteine peroxiredoxin, is the third most abundant protein in red cells. Although progress has been made in the functional characterization of Prx2, its role in red cell membrane protein homeostasis is still under investigation. Here, we studied Prx2−/− mouse red cells. The absence of Prx2 promotes (i) activation of the oxidative-induced Syk pathway; (ii) increased band 3 Tyr phosphorylation, with clustered band 3; and (iii) increased heat shock protein (HSP27 and HSP70) membrane translocation. This was associated with enhanced in vitro erythrophagocytosis of Prx2−/− red cells and reduced Prx2−/− red cell survival, indicating the possible role of Prx2 membrane recruitment in red cell aging and in the clearance of oxidized hemoglobin and damaged proteins through microparticles. Indeed, we observed an increased release of microparticles from Prx2−/− mouse red cells. The mass spectrometric analysis of erythroid microparticles found hemoglobin chains, membrane proteins, and HSPs. To test these findings, we treated Prx2−/− mice with antioxidants in vivo. We observed that N-acetylcysteine reduced (i) Syk activation, (ii) band 3 clusterization, (iii) HSP27 membrane association, and (iv) erythroid microparticle release, resulting in increased Prx2−/− mouse red cell survival. Thus, we propose that Prx2 may play a cytoprotective role in red cell membrane protein homeostasis and senescence.  相似文献   

8.
Previous research showed that increasing membrane sphingomyelin (SPH) levels in rat pheochromocytoma (PC12) cells to the same extent as that seen in some brain regions with aging dramatically increases the vulnerability to oxidative stress (OS). These increases in vulnerability were determined by assessing deficits in the ability of these cells to extrude and/or sequester Ca2+ following 30 mM KCl-induced depolarization (recovery). The purpose of the present experiments was to discern whether increasing the levels of particular SPH metabolite(s), i.e., ceramide (Cer), sphingosine (Ssine), or sphingosine-1-phosphate (SPP), or indirectly increasing the concentrations of these metabolites with sphingomylinase (Sase), would interact with the cell’s sensitivity to OS induced by low (5 μM) or high (nonlethal, 300 μM) H2O2. In addition, the OS vulnerability was examined as above under decreased SPH levels by exposing the cells to L-cycloserine (Lcc), which prevents SPH synthesis. Both Sase and SPP significantly decreased Ca2+ recovery of PC12 cells after H2O2 exposure. Conversely, Lcc-treated cells showed no further OS-induced decrements in recovery below those seen in controls. SPP significantly decreased glutathione levels (GSH) in the absence of OS. Repletion of GSH with 20 mM N-acetylcysteine significantly attenuated the effect of 5 μM H2O2 on recovery in SPP-treated cells and decreased sensitivity of SPP-treated cells to low doses of OS. Overall, our results suggest a critical role for GSH and SPP in the regulation of OS vulnerability, especially as it relates to Ca2+ homeostasis.  相似文献   

9.
Oxygen-derived free radicals mediate an important step in the initiation of experimental acute pancreatitis. Thereby, it seems that these reactive oxygen metabolites are generated at an early stage of disease. The source of the enhanced production of oxygen radicals still remains unclear. Experimentally, the efficiency of scavenger treatment varied between different models, whereby these differences depended on the experimental model and not on the form of pancreatitis which was induced. Most studies pretreated the experimental animals before inducing acute pancreatitis. This does not mirror the clinical reality, since patients are admitted to the hospital after onset of the disease. It was shown in Cerulein pancreatitis, however, that scavenger treatment also mitigated the pancreatic tissue damages after induction of acute pancreatitis. Moreover, antioxidant treatment also attenuated the extrapancreatic complications, thus improving the final outcome of the disease. The first indirect observations also suggest that in human acute recurrent and chronic pancreatitis, oxygen free radicals are generated and add to the damages seen. Therefore, well-defined controlled clinical studies with patients suffering from acute pancreatitis are needed to validate the role of oxygen radicals in this disease.  相似文献   

10.
Extracts and smoke condensates of marijuana, Transkei home-grown tobacco and also commercial cigarette tobaccos were assayed for their mutagenic activity to Salmonella typhimurium strains TA98, TA100, TA1535, TA1537 and TA1538, both with and without metabolic activation. No mutagenic activity was detected in dichloromethane extracts of marijuana and tobacco per se, but all the smoke condensates exhibited mutagenicity with metabolic activation. The only strain not mutated by any of the pyrolyzates was TA1535. Transkei tobacco pyrolyzate proved to be the most mutagenic, followed by marijuana, pipe and cigarette tobacco. Mutagenicity was positively associated with the nitrogen content of the various products. The potent mutagenic action of marijuana smoke condensate, coupled with a condensate yield of more than 50% higher than that of cigarette and pipe tobacco, indicates a high carcinogenic risk associated with marijuana smoking.  相似文献   

11.
A test system for the detection of substances with cell-irritating or cell-damaging effects using isolated brown fat cells is presented and the effects of cigarette smoke condensates (CSC) from high and low tar yield cigarettes on this system examined. The condensates inhibited noradrenaline stimulated respiration in a dose-dependent manner. Ethanol solutions of the condensates had a stronger inhibitory effect than DMSO solutions. The CSC strongly inhibited the mitochondrial function but other cellular functions were also impaired.  相似文献   

12.
Pezeshk A 《Life sciences》2004,74(19):2423-2429
Electron loss from N-(2-mercaptopropionyl) glycine (PSH) gave an EPR detectable radical anion, PS-.SP(-). When the PSH derivative was frozen in aqueous DNA solutions to 77 K and exposed to ionizing radiation, normal damage to the DNA was detected by EPR spectroscopy. However, on annealing above 77 K, central EPR features for the DNA base radical cations and anions gave central features assigned to PS-.SP(-) sigma*-radical anions, together with outer features for 5-6-dihydro-5-thymyl radicals, TH.. It is proposed that on freezing, the PSH molecules are constrained into a glassy region around the DNA, and that, on annealing, electron donation gives PS. radicals, with loss of quanine radical-cations, G(.+). The PS. radicals were not detectable, but on reaction with another PSH molecule, gave good EPR spectra for PS-.SP(-) radical-anions. These results indicate that PSH had little effect on the yield of the other base radicals C(.-)/T(.-). Also, growth of TH. radicals, formed from protonated thymine radical-anions, T(.-), were detected. We conclude that the primary effect of PSH is to capture the G(.+) centers, and thus could either prevent or repair radiation damage to DNA.  相似文献   

13.
14.
Glutathione has been implicated to function in cytoprotection against cadmium toxicity. The mechanism by which glutathione plays this role has not been well understood. Because glutathione is an important antioxidant and several studies have shown that cadmium induces oxidative stress, this study was undertaken to determine whether development of cadmium resistance is linked to enhanced antioxidant activities. A cadmium-resistant subpopulation of human lung carcinoma A549 cells, which was developed by repeatedly exposing the cells to step-wise increased cadmium concentrations, was compared to a cadmium-sensitive one. The acquired cadmium resistance resulted from neither decreased cadmium uptake nor enhanced cellular metallothionein synthesis. Glutathione content, however, was markedly elevated in the cadmium-resistant cells. In contrast, the activities of the glutathione redox cycle related enzymes, glutathione peroxidase and reductase, were unchanged. Two other antioxidant enzymes, superoxide dismutase and catalase, were also not altered. The results suggest that the development of cadmium resistance in A549 cells unlikely results from enhanced antioxidant enzyme activities, although it is associated with elevated cellular glutathione levels. In addition, measurement of the mRNA and DNA levels for γ-glutamyleysteine synthetase, the rate-limiting enzyme for glutathione biosynthesis, revealed that enhanced expression of the enzyme but not gene amplification is likely responsible for the elevation of cellular glutathione levels.  相似文献   

15.
This review compares and contrasts the chemistry of cigarette smoke, wood smoke, and the smoke from plastics and building materials that is inhaled by persons trapped in fires. Cigarette smoke produces cancer, emphysema, and other diseases after a delay of years. Acute exposure to smoke in a fire can produce a loss of lung function and death after a delay of days or weeks. Tobacco smoke and the smoke inhaled in a burning building have some similarities from a chemical viewpoint. For example, both contain high concentrations of CO and other combustion products. In addition, both contain high concentrations of free radicals, and our laboratory has studied these free radicals, largely by electron spin resonance (ESR) methods, for about 15 years. This article reviews what is known about the radicals present in these different types of smokes and soots and tars and summarizes the evidence that suggests these radicals could be involved in cigarette-induced pathology and smoke-inhalation deaths. The combustion of all organic materials produces radicals, but (with the exception of the smoke from perfluoropolymers) the radicals that are detected by ESR methods (and thus the radicals that would reach the lungs) are not those that arise in the combustion process. Rather they arise from chemical reactions that occur in the smoke itself. Thus, a knowledge of the chemistry of the smoke is necessary to understand the nature of the radicals formed. Even materials as similar as cigarettes and wood (cellulose) produce smoke that contains radicals with very different lifetimes and chemical characteristics, and mechanistic rationales for this are discussed. Cigarette tar contains a semiquinone radical that is infinitely stable and can be directly observed by ESR. Aqueous extracts of cigarette tar, which contain this radical, reduce oxygen to superoxide and thus produce both hydrogen peroxide and the hydroxyl radical. These solutions both oxidize alpha-1-proteinase inhibitor (a1PI) and nick DNA. Because of the potential role of radicals in smoke-inhalation injury, we suggest that antioxidant therapy (such as use of an inhaler for persons brought out of a burning building) might prove efficacious.  相似文献   

16.
Fire accident victims who sustain both thermal injury to skin and smoke inhalation have gross evidence of systemic and pulmonary oxidant damage and acute lung injury. We hypothesized that gamma-tocopherol (gT), a reactive O(2) and N(2) scavenger, when delivered into the airway, would attenuate lung injury induced by burn and smoke inhalation. Acute lung injury was induced in chronically prepared, anesthetized sheep by 40% total burn surface area, third-degree skin burn and smoke insufflation (48 breaths of cotton smoke, <40 degrees C). The study groups were: (1) Sham (not injured, flaxseed oil (FO)-nebulized, n=6); (2) SA-neb (injured, saline-nebulized, n=6); (3) FO-neb (injured, FO-nebulized, n=6); and (4) gT+FO-neb (injured, gT and FO-nebulized, n=6). Nebulization was started 1 h postinjury, and 24 ml of FO with or without gT (51 mg/ml) was delivered into airways over 47 h using our newly developed lipid aerosolization device (droplet size: 2.5-5 microm). The burn- and smoke inhalation-induced pathological changes seen in the saline group were attenuated by FO nebulization; gT addition further improved pulmonary function. Pulmonary gT delivery along with a FO source may be a novel effective treatment strategy in management of patients with acute lung injury.  相似文献   

17.
18.
Ozone is so reactive that it can be predicted to be entirely consumed as it passes through the first layer of tissue it contacts at the lung/air interface. This layer includes the lung lining fluid (tracheobronchial surface fluid and alveolar and small airway lining fluid) and, where the lung lining fluid is thin or absent, the membranes of the epithelial cells that line the airways. Therefore, the biochemical changes that follow the inhalation of ozone must be relayed into deeper tissue strata by a cascade of ozonation products. Lipid ozonation products (LOP) are suggested to be the most likely species to act as signal transduction molecules. This is because unsaturated fatty acids are present in the lipids in both the lung lining fluid and in pulmonary cell bilayers, and ozone reacts with unsaturated fatty acids to produce ozone-specific products. Further, lipid ozonation products are finite in number, have structures that are predictable from the Criegee ozonation mechanism, and are small, diffusible, stable (or metastable) molecules. Preliminary data show that individual LOP cause the activation of specific lipases, which trigger the release of endogenous mediators of inflammation.  相似文献   

19.
Aldose reductase (AR), a glucose-metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5–30 µM) relative to glucose. Acrolein, a major endogenous lipid peroxidation product as well as a component of environmental pollutants and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders, but the mechanism of acrolein-induced cytotoxicity is not clearly understood. We have investigated the role of AR in acrolein-induced cytotoxicity in primary human small airway epithelial cells (SAECs). Exposure of SAECs to varying concentrations of acrolein caused cell death in a concentration- and time-dependent manner. AR inhibition by fidarestat prevented the low-dose (5–10 µM) but not the high-dose (>10 µM) acrolein-induced SAEC death. AR inhibition protected SAECs from low-dose (5 µM) acrolein-induced cellular reactive oxygen species (ROS). Inhibition of acrolein-induced apoptosis by fidarestat was confirmed by decreased condensation of nuclear chromatin, DNA fragmentation, comet tail moment, and annexin V fluorescence. Further, fidarestat inhibited acrolein-induced translocation of the proapoptotic proteins Bax and Bad from the cytosol to the mitochondria and that of Bcl2 and BclXL from the mitochondria to the cytosol. Acrolein-induced cytochrome c release from mitochondria was also prevented by AR inhibition. The mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinases 1 and 2, stress-activated protein kinase/c-Jun NH2-terminal kinase, and p38MAPK, and c-Jun were transiently activated in airway epithelial cells by acrolein in a concentration- and time-dependent fashion, which was significantly prevented by AR inhibition. These results suggest that AR inhibitors could prevent acrolein-induced cytotoxicity in the lung epithelial cells.  相似文献   

20.
Of the major cellular antioxidant defenses, glutathione (GSH) is particularly important in maintaining the cytosolic redox potential. Whereas the healthy myocardium is maintained at a highly reduced redox state, it has been proposed that oxidation of GSH can affect the dynamics of Ca2+-induced Ca2+ release. In this study, we used multiple approaches to define the effects of oxidized glutathione (GSSG) on ryanodine receptor (RyR)-mediated Ca2+ release in rabbit ventricular myocytes. To investigate the role of GSSG on sarcoplasmic reticulum (SR) Ca2+ release induced by the action potential, we used the thiol-specific oxidant diamide to increase intracellular GSSG in intact myocytes. To more directly assess the effect of GSSG on RyR activity, we introduced GSSG within the cytosol of permeabilized myocytes. RyR-mediated Ca2+ release from the SR was significantly enhanced in the presence of GSSG. This resulted in decreased steady-state diastolic [Ca2+]SR, increased SR Ca2+ fractional release, and increased spark- and non-spark-mediated SR Ca2+ leak. Single-channel recordings from RyR’s incorporated into lipid bilayers revealed that GSSG significantly increased RyR activity. Moreover, oxidation of RyR in the form of intersubunit crosslinking was present in intact myocytes treated with diamide and permeabilized myocytes treated with GSSG. Blocking RyR crosslinking with the alkylating agent N-ethylmaleimide prevented depletion of SR Ca2+ load induced by diamide. These findings suggest that elevated cytosolic GSSG enhances SR Ca2+ leak due to redox-dependent intersubunit RyR crosslinking. This effect can contribute to abnormal SR Ca2+ handling during periods of oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号