首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reports on lipid composition of peripheral nervous system have generally been restricted to the saturated fatty acids of the endoneurium. In this work we attempt to determine the fatty acid composition of the different lipid classes in both endo- and perineurium from sciatic nerve microdissection on adult rats. Unsaturated fatty acids were found to make up around 60% of total fatty acids in samples of endoneurium and perineurium, with monounsaturated fatty acids forming 40-50% of total unsaturated fatty acid content. Although the same fatty acids were present in both tissues there was a striking difference in C 18:1 (n-9) and C 18:2 (n-6) ratio between endoneurium and perineurium, which is particularly rich in linoleic acid. The nonpolar perineurial lipids were found to be richest in linoleic acid. Phospholipids were present in the perineurium, and they contained high proportions of saturated and medium-chain monounsaturated fatty acids.  相似文献   

2.
The purpose of the present study was to investigate the relation between adipose tissue polyunsaturated fatty acids, an index of long-term or habitual fatty acid dietary intake and depression. The sample consisted of 90 adolescents from the island of Crete. There were 54 girls and 36 boys, aged 13-18. The mean age was 15.2 years. Subjects were examined by the Preventive Medicine and Nutrition Clinic of the University of Crete. Depression was assessed through the use of the Beck Depression Inventory (BDI) and the Center for Epidemiologic Studies Depression Scale (CES-D). Unlike other studies, there were no significant relations between adipose tissue n-3 or n-6 polyunsaturated fatty acids and depression. BDI correlated positively with adipose tissue C20:3n-6/C18:3n-6 ratio, while CES-D correlated positively with adipose tissue (C20:3n-6+C22:5n-3)/(C18:3n-6+C20:5n-3) ratio. Depressed subjects (BDI>16, CES-D>16) had significantly elevated adipose tissue C20:3n-6/C18:3n-6 and (C20:3n-6+C22:5n-3)/(C18:3n-6+C20:5n-3) ratios, than non-depressed subjects. The observed positive relation between depression and the particular fatty acid ratios, in the present study, appears to indicate increasing activity of elongases, the enzymes responsible for elongating polyunsaturated fatty acids into their longer-chain derivatives, with increasing depression. This is the first literature report of a possible relation between elongases and depression. The observed relation may stem from a possible over-expression of the HELO1 (ELOVL5) gene, the gene encoding a protein responsible for elongating long-chain polyunsaturated fatty acids, in the adipose tissue of depressed adolescents.  相似文献   

3.
This study investigated the effects of dietary linolenic acid (C18:3n-3) v. linoleic acid (C18:2n-6) on fatty acid composition and protein expression of key lipogenic enzymes, acetyl-CoA carboxylase (ACC), stearoyl-CoA desaturase (SCD) and delta 6 desaturase (Δ6d) in longissimus muscle and subcutaneous adipose tissue of bulls. Supplementation of the diet with C18:3n-3 was accompanied by an increased level of n-3 fatty acids in muscle which resulted in decrease of n-6/n-3 ratio. The diet enriched with n-3 polyunsaturated fatty acids (PUFAs) significantly inhibited SCD protein expression in muscle and subcutaneous adipose tissue, and reduced the Δ6d expression in muscle. There was no significant effect of the diet on ACC protein expression. Inhibition of the Δ6d expression was associated with a decrease in n-6 PUFA level in muscles, whereas repression of SCD protein was related to a lower oleic acid (C18:1 cis-9) content in the adipose tissue. Expression of ACC, SCD and Δ6d proteins was found to be relatively higher in subcutaneous adipose tissue when compared with longissimus muscle. It is suggested that dietary manipulation of fatty acid composition in ruminants is mediated, at least partially, through the regulation of lipogenic enzymes expression and that regulation of the bovine lipogenic enzymes expression is tissue specific.  相似文献   

4.
The effect of sex, source of saturated fat (lard v. palm oil) and glycerol inclusion in the fattening diet on composition and fatty acid positional distribution in the triglyceride molecule was studied in pigs from 78 to 110 kg BW. Average daily gain and carcass characteristics, including ham and loin weight, were not affected by dietary treatment but sex affected backfat depth (P<0.01). A significant interaction between sex and glycerol inclusion was observed; dietary glycerol increased lean content in gilts but not in barrows (P<0.05 for the interaction). Individual and total saturated fatty acid (SFA) concentrations were greater in barrows than in gilts. In contrast, the concentration of total polyunsaturated fatty acids (PUFA) and of C18:2n-6, C18:3n-3, C20:3n-9 and C20:4n-6 in the intramuscular fat (IMF) was higher (P<0.05) in gilts than in barrows. Sex did not affect total monounsaturated fatty acids (MUFA) concentration in the IMF. The proportion of SFA in the subcutaneous fat (SF) was higher in barrows than in gilts (P<0.001). Within the individual SFA, sex affected only the concentrations of C14:0 and C16:0 (P<0.001). Dietary fat did not affect total SFA or PUFA concentrations of the IMF but the subcutaneous total MUFA concentration tended to be higher (P=0.079) in pigs fed lard than in pigs fed palm oil. Dietary glycerol increased total MUFA and C18:1n-9 concentration in the IMF and increased total MUFA and decreased C18:2n-6, C18:3n-3 and total PUFA concentrations in the SF. The data indicate that altering the fatty acid composition of the triglyceride molecule at the 2-position, by dietary intervention during the fattening phase, is very limited.  相似文献   

5.
The purpose of the present study was to investigate the relation between adipose tissue polyunsaturated fatty acids, an index of long-term or habitual fatty acid dietary intake and depression. The sample consisted of 150 elderly males from the island of Crete. The subjects were survivors of the Greek Seven Countries Study group. The mean age was 84 years. The number of subjects with complete data on all variables studied was 63. Subjects were examined by the Preventive Medicine and Nutrition Clinic of the University of Crete. Depression was assessed through the use of the short form of the Geriatric Depression Scale (GDS-15). Depression correlated negatively with adipose tissue alpha-linolenic acid (C18:3n-3). Depressed subjects had significantly reduced (-10.5%) adipose tissue C18:3n-3 levels than non-depressed subjects. The observed negative relation between adipose tissue C18:3n-3 and depression, in the present study, appears to indicate increasing long-term dietary C18:3n-3 intakes with decreasing depression. This agrees with findings of other studies indicating an inverse relation between depression and consumption of fish and n-3 polyunsaturated fatty acids. This is the first literature report of a relation between adipose tissue C18:3n-3 and depression. Furthermore, this is the first report of a relation between adipose PUFA and depression in an elderly sample. Depression has been reported to be associated with elevated cytokines, such as, IL-1, IL-2, IL-6, INF-gamma and INF-alpha. Fish oil and omega-3 fatty acids, on the other hand, have been reported to inhibit cytokine production. The observed negative relation between adipose C18:3n-3 and depression, therefore, may stem from the inhibiting effect of C18:3n-3 or its long-chain metabolites on cytokine synthesis.  相似文献   

6.
The yolk sac membrane (YSM) of the chicken embryo is known to express δ-9 and δ-6 desaturase activities, suggesting that biosynthesis of the unsaturated fatty acids 18:1n-9, 20:4n-6 and 22:6n-3 might occur during the transfer of yolk lipids across the YSM. If so, this biosynthesis could help to satisfy the demands of the embryonic tissues for these unsaturates. To assess the ability of the YSM to perform these conversions, pieces of the tissue were incubated in vitro with the precursor fatty acids, 14C-18:0, 14C-18:2n-6 or 14C-18:3n-3, and the recovery of radioactivity in the respective products, 18:1n-9, 20:4n-6 and 22:6n-3, was determined. After 4 h of continuous incubation, radioactivity from these precursors was incorporated primarily into triacylglycerol and phospholipid of the tissue pieces. Only small proportions (0.3–4.7%) of this incorporated radioactivity were, however, recovered as 18:1n-9, 20:4n-6 or 22:6n-3. The majority of the incorporated label was retained in the form of the precursor fatty acids. After a 1-h pulse incubation with the 14C precursors, followed by a 3-h chase incubation in the absence of exogenous label, the conversion of incorporated radioactivity to the end product unsaturates was again relatively low (0.5–8.1%). Thus, although conversions of the precursors to the end product fatty acids were detectable in this system, the biosynthesis of these unsaturates is apparently a quantitatively minor pathway in the YSM. Nevertheless, since the amount of 18:2n-6 in the yolk lipids far exceeds that of 20:4n-6, the conversion of even a small proportion of the former to the latter fatty acid could significantly increase the supply of 20:4n-6 to the embryonic tissues.  相似文献   

7.
A combined fatty acid metabolism assay was employed to determine fatty acid uptake and relative utilisation in enterocytes isolated from the pyloric caeca of rainbow trout. In addition, the effect of a diet high in long-chain monoenoic fatty alcohols present as wax esters in oil derived from Calanus finmarchicus, compared to a standard fish oil diet, on caecal enterocyte fatty acid metabolism was investigated. The diets were fed for 8 weeks before caecal enterocytes from each dietary group were isolated and incubated with [1-14C]fatty acids: 16:0, 18:1n-9, 18:2n-6, 18:3n-3, 20:1n-9, 20:4n-6, 20:5n-3, and 22:6n-3. Uptake was measured over 2 h with relative utilisation of different [1-14C]fatty acids calculated as a percentage of uptake. Differences in uptake were observed, with 18:1n-9 and 18:2n-6 showing the highest rates. Esterification into cellular lipids was highest with 16:0 and C18 fatty acids, accounting for over one-third of total uptake, through predominant incorporation in triacylglycerol (TAG). The overall utilisation of fatty acids in phospholipid synthesis was low, but highest with 16:0, the most prevalent fatty acid recovered in intracellular phosphatidylcholine (PC) and phosphatidylinositol (PI), although exported PC exhibited higher proportions of C20/C22 polyunsaturated fatty acids (PUFA). Other than 16:0, incorporation into PC and PI was highest with C20/C22 PUFA and 20:4n-6 respectively. Recovery of labelled 18:1n-9 in exported TAG was 3-fold greater than any other fatty acid which could be due to multiple esterification on the glycerol 'backbone' and/or increased export. Approximately 20-40% of fatty acids taken up were beta-oxidised, and was highest with 20:4n-6. Oxidation of 20:5n-3 and 22:6n-3 was also surprisingly high, although 22:6n-3 oxidation was mainly attributed to retroconversion to 20:5n-3. Metabolic modification of fatty acids by elongation-desaturation was generally low at <10% of [1-14C]fatty acid uptake. Dietary copepod oil had generally little effect on fatty acid metabolism in enterocytes, although it stimulated the elongation and desaturation of 16:0 and elongation of 18:1n-9, with radioactivity recovered in longer n-9 monoenes. The monoenoic fatty acid, 20:1n-9, abundant in copepod oil as the homologous alcohol, was poorly utilised with 80% of uptake remaining unesterified in the enterocyte. However, the fatty acid composition of pyloric caeca was not influenced by dietary copepod oil.  相似文献   

8.
An important question for mammalian nutrition is the relative efficiency of C18 versus C20 essential fatty acids (EFAs) for supporting the tissue composition of n-3 and n-6 pathway end products. One specific question is whether C22 EFAs are made available to tissues more effectively by dietary alpha-linolenic acid (18:3n-3) and linoleic acid (18:2n-6) or by dietary eicosapentaenoic acid (20:5n-3) and dihomo-gamma-linolenic acid (20:3n-6). To address this question in a direct manner, four stable isotope compounds were given simultaneously in a novel paradigm. A single oral dose of a mixture of 2H5-18:3n-3, 13C-U-20:5n-3, 13C-U-18:2n-6, and 2H5-20:3n-6 was administered to rats given a defined diet. There was a preferential in vivo conversion of arachidonic acid (20:4n-6) to docosatetraenoic acid (22:4n-6) and of 22:4n-6 to n-6 docosapentaenoic acid (22:5n-6) when the substrates originated from the C18 precursors. However, when the end products docosahexaenoic acid (22:6n-3) or 22:5n-6 were expressed as the total amount in the plasma compartment divided by the dosage, this parameter was 11-fold greater for 20:5n-3 than for 18:3n-3 and 14-fold greater for 20:3n-6 than for 18:2n-6. Thus, on a per dosage basis, the total amounts of n-3 and n-6 end products accreted in plasma were considerably greater for C20 EFA precursors relative to C18.  相似文献   

9.
In contrast to brain, the sciatic nerve concentration of vitamin E in rats increased rapidly during the postnatal period (approximately fivefold between days 1 and 8), then decreased dramatically (about twofold between days 8 and 30), and further decreased slowly between days 30 and 60 and remained constant up to 2 years. Although the sciatic nerve concentration of vitamin E decreased by 58% between days 8 and 30, the concentration of vitamin E in serum presented a marked decrease (approximately 75%). The vitamin E concentrations varied in a similar pattern in whole sciatic nerve and in endoneurium and showed a very close correlation (r = 0.94). The age-related changes in fatty acid concentration of the endoneurial fraction of the sciatic nerve were characterized by a large increase in content of saturated and monounsaturated fatty acids up to 6 months (twofold for saturated and fourfold for monounsaturated fatty acids). Then, up to 24 months, the amount of these fatty acids decreased very slowly. The content of (n-6) polyunsaturated fatty acids (PUFAs) decreased rapidly up to 1 year and slowly afterward. In contrast, during development the amount of (n-3) PUFA was relatively stable and decreased during aging. A highly significant correlation between vitamin E and (n-6) PUFA [18:2(n-6), 20:4(n-6), and total (n-6)] was observed but not between (n-3) PUFA and vitamin E. It is suggested that there may be a relationship between vitamin E and (n-6) PUFA in the PNS membranes during development and aging.  相似文献   

10.
Wistar rats were fed for three generations with a semisynthetic diet containing either 1.5% sunflower oil (940 mg% of C18:2n-6, 6 mg% of C18:3n-3) or 1.9% soya oil (940 mg% of C18:2n-6, 130 mg% of C18:3n-3). At 60 days of age, the male offspring of the third generation were killed. The fatty acyl composition of isolated capillaries and choroid plexus was determined. The major changes noted in the fatty acid profile of isolated capillaries were a reduction (threefold) in the level of docosahexaenoic acid and, consequently, a fourfold increase in docosapentaenoic acid in sunflower oil-fed animals. The total percentage of polyunsaturated fatty acids was close to that in the soya oil-fed rats, but the ratio of n-3/n-6 fatty acids was reduced by threefold. In the choroid plexus, the C22:6n-3 content was also reduced, but by 2.6-fold, whereas the C22:5n-6 content was increased by 2.3-fold and the ratio of n-3/n-6 fatty acids was reduced by 2.4-fold. When the diet of sunflower oil-fed rats was replaced with a diet containing soya oil at 60 days of age, the recovery in content of n-6 and n-3 fatty acids started immediately after diet substitution; it progressed slowly to reach normal values after 2 months for C22:6n-5 and 2.5 months for C22:6n-3. The recovery in altered fatty acids of choroid plexus was also immediate and very fast. Recovery in content of C22:5n-6 and C22:6n-3 was complete by 46 days after diet substitution.  相似文献   

11.
The lipid content and composition of Nereis (Hediste) diversicolor O. F. Müller (Annelida, Polychaeta, Nereidae) a mud-dwelling, intertidal errant polychaete in the Tagus estuary (Portugal), were examined on the monthly basis by lipid extraction, TLC and capillary GC. In this estuary, N. diversicolor is by far the dominant species among polychaeta and the main food item in the natural diet of several flatfishes. The biochemical elucidation of its lipid structure and distribution throughout the year, described in this study, provides information not only about the physiological role of lipids in the animal under consideration but also about dietary fatty acid requirements of some flatfishes in the wild and under laboratory conditions.The total lipid content varied between a maximum of 19.3% lyophilized dry weight in February (4.4% fresh weight) and a minimum of 6.6% in August (1.9% fresh weight). The major lipid classes were triacylglycerol, phospholipid, free sterol, free fatty acid, sterol ester/wax ester and alkyldiacylglycerol.The fatty acid composition was rather unsaturated with a 1:2 mean ratio of n-3: n-6. The major fatty acids were C160:0, C18:1n-9, C18:2n-6, and C20:5n-3; there were smaller amounts of C180:0, C18:1n-11, C18:1n-7, C18:3n-3, C20:1, C20:2n-6, C20:4n-6, C22:2, C22:5n-3, and many other fatty acids were detected at trace levels. The unsaturation ranged from 36.9 mg/g dry weight in summer to 107.4 mg/g in winter. An accumulation of fatty acids from plant origin was evident, in particular linoleic acid (C18:2n-6), which was quantitatively one of the major fatty acids throughout the year.  相似文献   

12.
This study was undertaken to determine the mode of transport of the essential (n-3) fatty acids docosahexaenoic acid 22:6(n-3) and linolenic acid 18:3(n-3). Male weanling Sprague-Dawley rats received a mixture of corn oil and [14C]18:3(n-3) or [14C]22:6(n-3) by gavage. At periods of 1 to 4 days after the injection, four rats per time point were killed and samples of blood were taken via heart puncture and the livers and retinas were collected. Blood lipoproteins and plasma proteins were separated by ultracentrifugation and analyzed by HPLC. Lipids were extracted and saponified and the fatty acids were converted to phenacyl esters for separation of individual fatty acids. After 1 and 2 h, radioactivity from 18:3(n-3) and 22:6(n-3) was observed primarily in the chylomicron/very low density lipoprotein fraction. By 4 h, radioactivity in the lipoprotein fraction was greatly decreased, with a small amount of radioactivity associated with albumin in the soluble protein fraction. After 24 h, the total amount of radioactivity associated with lipoprotein was further reduced, with more than half of the remaining label occurring in association with albumin and another unidentified protein. In the liver, 22:6(n-3) was concentrated in triacylglycerols (40.7%) and phospholipids (51.1%), with a maximum specific activity at 4 h. In the rod outer segments (ROS), the specific activity of [14C]22:6(n-3) increased to a maximum at 24 h and maintained a high level even at 4 days. These data suggest that after injection, 18:3(n-3) and 22:6(n-3) are esterified to triglyceride and phospholipid by the intestinal absorptive cells and transported in chylomicrons to the liver. After conversion of 18:3(n-3) to 22:6(n-3) in the liver, the retina accumulates 22:6(n-3) which may be transported from the liver via albumin and another unidentified protein, and is retained by the rod outer segments.  相似文献   

13.
The effects of clofibrate feeding on the metabolism of polyunsaturated fatty acids were studied in isolated rat hepatocytes. Administration of clofibrate stimulated the oxidation and particularly the peroxisomal beta-oxidation of all the fatty acids used. The increase in oxidation products was markedly higher when n-3 fatty acids were used as substrate, indicating that peroxisomes contribute more to the oxidation of n-3 than n-6 fatty acids. The whole increase in oxidation could be accounted for by a corresponding decrease in acylation in triacylglycerol while the esterification in phospholipids remained unchanged. A marked stimulation of the amounts of newly synthesized C16 and C18 fatty acids recovered, was observed when 18:2(n-6), 20:3(n-6), 18:3 (n-3) and 20:5(n-3), but not when 20:4(n-6) and 22:4(n-6) were used as substrate. This agrees with the view that extra-mitochondrial acetyl-CoA produced from peroxisomal beta-oxidation is more easily used for fatty acid new synthesis than acetyl-CoA from mitochondrial beta-oxidation. The delta 6 and delta 5 desaturase activities were distinctly higher in cells from clofibrate fed rats indicating a stimulating effect.  相似文献   

14.
This study was designed to assess the effect of ambient temperature on lipid content, lipid classes and fatty acid compositions of heart, liver, muscle and brain in oviparous lizards, Phrynocephalus przewalskii, caught in the desert area of China. Significant differences could be observed in the contents of the total lipid and fatty acid compositions among different temperatures (4, 25 and 38 degrees C). The study showed that liver and muscle were principal sites of lipid storage. Triacylglycerol (TAG) mainly deposited in the liver, while phospholipids (PL) was identified as the predominant lipid class in the muscle and brain. Palmitic and stearic acid generally occupied the higher proportion in saturated fatty acids (SFA), while monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) consisted mainly of 16:1n-7, 18:1n-9, 18:2n-6, 18:3n-3, 20:4n-6 and 22:6n-3 regardless of tissue and temperature. These predominant fatty acids proportion fluctuations caused by temperature affected directly the ratio of unsaturated to saturated fatty acids. There was a tendency to increase the degree of unsaturation in the fatty acids of TAG and PL as environmental temperature dropped from 38 to 4 degrees C, although the different extent in different tissues. These results suggested that lipid characteristics of P. przewalskii tissues examined were influenced by ambient temperature.  相似文献   

15.
Isolated hepatocytes from Atlantic salmon (Salmo salar), fed diets containing either 100% fish oil or a vegetable oil blend replacing 75% of the fish oil, were incubated with a range of seven (14)C-labelled fatty acids. The fatty acids were [1-(14)C]16:0, [1-(14)C]18:1n-9, 91-(14)C]18:2n-6, [1-(14)C]18:3n-3, [1-(14)C]20:4n-6, [1-(14)C]20:5n-3, and [1-(14)C]22:6n-3. After 2 h of incubation, the hepatocytes and medium were analysed for acid soluble products, incorporation into lipid classes, and hepatocytes for desaturation and elongation. Uptake into hepatocytes was highest with [1-(14)C]18:2n-6 and [1-(14)C]20:5n-3 and lowest with [1-(14)C]16:0. The highest recovery of radioactivity in the cells was found in triacylglycerols. Of the phospholipids, the highest recovery was found in phosphatidylcholine, with [1-(14)C]16:0 and [1-(14)C]22:6n-3 being the most prominent fatty acids. The rates of beta-oxidation were as follows: 20:4n-6>18:2n-6=16:0>18:1n-9>22:6n-3=18:3n-3=20:5n-3. Of the fatty acids taken up by the hepatocytes, [1-(14)C]16:0 and [1-(14)C]18:1n-9 were subsequently exported the most, with the majority of radioactivity recovered in phospholipids and triacylglycerols, respectively. The major products from desaturation and elongation were generally one cycle of elongation of the fatty acids. Diet had a clear effect on the overall lipid metabolism, with replacing 75% of the fish oil with vegetable oil resulting in decreased uptake of all fatty acids and reduced incorporation of fatty acids into cellular lipids, but increased beta-oxidation activity and higher recovery in products of desaturation and elongation of [1-(14)C]18:2n-6 and [1-(14)C]18:3n-3.  相似文献   

16.
About 50% of the fatty acids in retinal rod outer segments is docosahexaenoic acid [22:6(n-3)], a member of the linolenic acid [18:3(n-3)] family of essential fatty acids. Dietary deprivation of n-3 fatty acids leads to only modest changes in 22:6(n-3) levels in the retina. We investigated the mechanism(s) by which the retina conserves 22:6(n-3) during n-3 fatty acid deficiency. Weanling rats were fed diets containing 10% (wt/wt) hydrogenated coconut oil (no n-3 or n-6 fatty acids), linseed oil (high n-3, low n-6), or safflower oil (high n-6, less than 0.1% n-3) for 15 weeks. The turnover of phospholipid molecular species and the turnover and recycling of 22:6(n-3) in phospholipids of the rod outer segment membranes were examined after the intravitreal injection of [2-3H]glycerol and [4,5-3H]22:6(n-3), respectively. Animals were killed on selected days, and rod outer segment membranes, liver, and plasma were taken for lipid analyses. The half-lives (days) of individual phospholipid molecular species and total phospholipid 22:6(n-3) were calculated from the slopes of the regression lines of log specific activity versus time. There were no differences in the turnover rates of phospholipid molecular species among the three dietary groups, as determined by the disappearance of labeled glycerol. Thus, 22:6(n-3) is not conserved through a reduction in phospholipid turnover in rod outer segments. However, the half-life of [4,5-3H]22:6(n-3) in the linseed oil group (19 days) was significantly less than in the coconut oil (54 days) and safflower oil (not measurable) groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Total and phospholipid fatty acid composition of fat body and Malpighian tubules from two larval stages, pupae and adults, of Zophobas atratus were analyzed. Saturated and unsaturated C16 and C18 fatty acids were major components and varied by life stage and tissue source. Eicosanoid-precursor fatty acids, including 20:3n-6, 20:4n-6 and 20:5n-3, were present in low quantities and varied by life stage and tissue source. 20:3n-6 was always present in the lowest proportions, indicating that eicosanoids derived from 20:4n-6 and 20:5n-3 (the 2- and 3-series) are likely to be of greater physiological significance in this insect. Fatty acid composition of Z. atratus fat body and Malpighian tubules was independent of diet, suggesting that this insect controls its fatty acid composition to meet the needs of individual tissues and ontogenetic constraints.  相似文献   

18.
The whole-body fatty acid balance method was used to investigate the fatty acid metabolism in Murray cod (Maccullochella peelii peelii) fed diets containing canola (CO) or linseed oil (LO). Murray cod were able to elongate and desaturate both 18:2n-6 and 18:3n-3. In fish fed the CO diet, 54.4% of the 18:2n-6 consumed was accumulated, 38.5% oxidized and 6.4% elongated and desaturated to higher homologs. Fish fed the LO diet accumulated 52.9%, oxidized 37% and elongated and desaturated 8.6% of the consumed 18:3n-3. The overall roles of n-6 fatty acids appeared more important in Murray cod compared to other freshwater species. Murray cod also showed a preferential order of utilization of C18 fatty acid for energy production (18:3n-3 > 18:2n-6 > 18:1n-9). Moreover, it is demonstrated that an increase in dietary 18:3n-3 is directly responsible of increased desaturase activity and augmented saturated fatty acid accumulation in the fish body. The present study also suggests that, in the context of the possible maximization of the natural ability of fish to produce long chain polyunsaturated fatty acids, the whole-body approach can be considered well suited and informative and Murray cod is a suited candidate to fish oil replacement for its diets.  相似文献   

19.
Dietary fatty acid incorporation and changes in various lipid and phospholipid classes in the mussel Mytilus galloprovincialis subjected to three different dietary regimens were analysed and compared. Group A was unfed; group B received a diet consisting of 100% Thalassiosira weissflogii, exhibiting the typical fatty acid composition of diatoms, and group C received a diet consisting of 100% wheat germ conferring a 18:2:n-6 abundance. Biochemical analyses of diets and mussels were carried out at the beginning and at the end of the 30-day experimental period. Starvation and T. weissflogii based diet poorly affected mussel growth and fatty acid composition which remained unchanged. On the contrary, the wheat germ-based diet increased the condition index and deeply affected the fatty acid profile of all lipid and phospholipid classes. The high dietary 18:2n-6 level drastically reduced tissue content of 20:4n-6, 20:5n-3 and 22:6n-3. The biosynthesis of Non Methylene Interrupted (NMI) dienoic fatty acid appeared to be insensitive to the high input of 16:1n-7 and 18:1n-9 respectively from diet B and C, and to the PUFA shortage of diet C. Nevertheless the two NMI trienoic derivatives, 20:3Δ5,11,14 and 22:3Δ7,13 16, were found higher in C with respect to other groups, presumably due to the high 18:2n-6 content of this diet.  相似文献   

20.
We examined the influence of the reproductive cycle and environmental factors on variations of the condition index (CI), tissue dry mass, shell size, total lipid content, and relative percent of fatty acids in the mussel, Perna perna. Spat or juveniles were reared to commercial size (70 mm) in suspension culture in the Golfo de Cariaco, Venezuela between May and October 2004. The dry mass of soft tissues and shell, a visual assessment of gonadal status and the organism lipid profile were established every fortnight. In parallel, we measured the environmental conditions, following chlorophyll a, salinity, temperature and seston levels. After an initial decrease, the CI rose and remained high until August after which it decreased continuously until October. Total lipid values also decreased initially, after which they showed two periods of rapid recuperation and depletion, the first between May and August and the second between August and October. Similar tendencies were noted in the fatty acids, C18:3n-3, C18:4n-3 and C22:6n-3. Correlation analysis found no significant relationships between environmental parameters and the variations in total lipids. However, significant correlations were noted between fatty acids and specific environmental parameters. In particular, temperature was inversely correlated with C14:0, C16:1n-7, C18:0, C18:1n-9 and 20:5n-3. Chlorophyll a was positively correlated with C14:0, C16:1n-7, C18:1n-7, C18:4n-3 and 20:4n-6. On the other hand, gametogenesis had an effect on C14:0, C16:1n-7, C18:1n-9 and C18:1n-7, while spawned and gonadal regression states had an effect on fatty acid 20:4n-6. Temperature and chlorophyll a levels strongly influenced the proportion of mussels spawning, suggesting that their influence upon lipid composition may be secondary to their impact upon reproduction. Despite the thermal stability of this tropical system, the lipid composition of mussels changed markedly during the study, reflecting the central role of diet and reproductive investment upon lipid composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号