首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, sensitive, and specific liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS) method for the determination of bile acids in human bile has been developed. The bile acids were extracted with a C(18) (octadecyl) reversed-phase column and identified and quantified by simultaneous monitoring of their parent and daughter ions, using the multiple reaction monitoring mode. Identification and quantification of conjugated bile acids in bile was achieved in 5 min. The detection limit was 1 ng, and the determination was linear for concentrations up to 100 ng. The percent recovery of standards made of single conjugated (glycine and taurine) bile acid or of mixture of glycine- or taurine-conjugated cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, and lithocholic acid averaged 71.73% to 95.92%. The percent recovery of the same standard bile acids was also determined by gas chromatography-mass spectrometry (GC-MS), using the selected ion monitoring mode, and averaged 66% to 96%. A biliary bile acid profile of human gallbladder bile was obtained by LC-MS/MS and GC-MS.The results showed a good correlation between the two techniques and no significant differences between the two methods were observed. The LC-MS/MS method was also used for the analysis of serum, urine, and fecal bile acids. In conclusion, LC-MS/MS is a simple, sensitive, and rapid technique for the analysis of conjugated bile acids in bile and other biological samples. - Perwaiz, S., B. Tuchweber, D. Mignault, T. Gilat, and I. M. Yousef. Determination of bile acids in biological fluids by liquid chromatography-electrospray tandem mass spectrometry. J. Lipid Res. 2001. 42: 114;-119.  相似文献   

2.
Determination of quantitative changes in the pattern of serum bile acids is important for the monitoring of diseases affecting bile acid metabolism. A sensitive and specific high-performance liquid chromatography (HPLC)-MS/MS method was developed for the differentiated quantification of unconjugated as well as glycine- and taurine-conjugated cholic, chenodeoxycholic (CDCA), deoxycholic (DCA), ursodeoxycholic (UDCA) and lithocholic acid (LCA) in serum samples. After solid-phase extraction and reversed-phase HPLC separation, detection of the conjugated bile acids was performed using electrospray ionization (ESI)-MS/MS and selected reaction monitoring mode, whereas unconjugated bile acids were determined by ESI-MS and selected ion monitoring mode. The within-day and between-day coefficients of variation were below 7% for all bile acids and the recovery rates of the extraction procedure were between 84.9 and 105%. The developed method was applied to a group of 21 healthy volunteers and preliminary reference intervals in serum were established. In patients with drug-induced cholestasis, an elevation of primary bile acids has been shown.  相似文献   

3.
A simple, sensitive, and specific high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for the analysis of the bile acid profile has been developed. Fifteen bile acids, including free and conjugated bile acids, were separated and detected by HPLC-MS/MS. The MS detection was performed by electrospray ionization (ESI) in negative ion mode. Quantification was achieved in multiple reaction monitoring (MRM) mode with external standard curve methods. Total analysis time was 15 min for one sample including re-equilibration time of the column. The assay was linear in the range 0.02-100.0 micromol/L with correlation coefficients of standard curves for all bile acids better than 0.999. The detection limits ranged from 0.001 to 0.006 micromol/L for different bile acids. The precisions for each bile acid were CVs<3.8% for within-day and CVs<6.1% for between-day. The average recoveries for all bile acids studied were in the range of 86-110.0%. The developed method was applied to the analysis of clinic samples consisting of 53 women with healthy pregnancies and 43 women with intrahepatic cholestasis of pregnancy (ICP). The results revealed that the bile acid profile was markedly different between women with ICP and women with healthy pregnancies.  相似文献   

4.
蚕蛹水解液的氨基酸分组分离法   总被引:3,自引:0,他引:3  
采用732、717树脂对蚕蛹酸水解液进行分离。732树脂先将蚕蛹水解液粗略分成酸性、中性、碱性氨基酸,717树脂再将中性氨基酸分成甘氨酸-丙氨组酸和亮氨酸-异亮氨酸-缬氨酸组。其中亮、异亮、缬氨酸的含量达到75.9%;同时还进行了脯氨酸的分离,经717树脂分离得到的脯氨酸的含量为50.6%。  相似文献   

5.
N-acetylglucosaminides. A new type of bile acid conjugate in man   总被引:1,自引:0,他引:1  
Bile acids were extracted from human urine and were separated into groups of nonamidated and glycine- and taurine-conjugated compounds. Each group was subfractionated in a reversed-phase high performance liquid chromatography system, and the fractions were analyzed by negative ion fast atom bombardment mass spectrometry and also by gas chromatography-mass spectrometry after enzymatic removal of glycine and taurine moieties. The major glycosides of the non-amidated bile acids were more polar than reference bile acid glucosides and gave quasimolecular ions at m/z 592, 594, and 610 consistent with N-acetylglucosaminides of unsaturated dihydroxy and saturated di- and trihydroxy bile acids. Gas chromatography-mass spectrometry analyses of methyl ester trimethylsilyl ether derivatives showed fragments typical for N-acetylglucosaminides (m/z 173 and 186) in addition to those also given by glucosides (m/z 204 and 217). The N-acetylglucosaminides were inert toward alpha- and beta-glucosidase but were cleaved completely with N-acetylglucosaminidase. The released sugar moiety was identified as N-acetylglucosamine. One of the liberated bile acids was identified as ursodeoxycholic acid. The other acids were not identical to any known primary or secondary bile acid in humans. Fast atom bombardment mass spectrometry analyses of the glycine-and taurine-conjugated bile acid glycosides only showed ions consistent with the presence of glucosides (m/z 626 and 676). These compounds were sensitive only toward beta-glucosidase which liberated a trihydroxy bile acid as the major compound. Based on the recover of 13C- and 14C-labeled chenodeoxycholic acid glucoside added as internal standard, the daily excretion of nonamidated bile acid glycosides was estimated to be about 137 micrograms or 0.29 mumol, N-acetylglucosaminides constituting about 90%. The daily excretion of the glucosides of amidated bile acids was about 150 micrograms or 0.25 mumol, glycine conjugates constituting about 90%.  相似文献   

6.
A liquid chromatography-diode array detection-electrospray ionization ion trap mass spectrometry (LC-DAD-ESI-MS(n)) method was established for the analysis of danshensu, caffeic acid, ferulic acid and isoferulic acid in rat plasma, bile, urine and feces after oral administration or intravenous injection. Liquid-liquid extraction was employed for the preparation of biosamples, and the chromatographic separation was carried out using an Agilent Zorbax Extend C(18) reversed phase column and acetonitrile-0.1% formic acid as the mobile phase. Totally nineteen metabolites were detected and identified as prototype, methylated, hydroxylated, sulfated and glucuronized conjugates. The metabolism of the individual phenolic acids in biosamples was investigated, and the metabolic pathway was proposed. By comparing the metabolism of different compounds which shared similar structures, we were able to find that methylation was the main pathway of danshensu metabolism, and the double bond on the side chain was critical for the drug excretion via bile and the formation of glucuronized conjugates. The results proved that the established method was simple, sensitive and reliable, which could be used to detect and identify the structures of metabolites and to better understand their in vivo metabolism.  相似文献   

7.
A new assay for the enzyme bile acid:CoA ligase is presented. The new assay is designed to supplant the existing radiometric assays which require radiolabeled bile acids. The new assay couples the formation of bile acid-CoA to its glycination in a reaction catalyzed by bile acid-CoA:glycine N-acyltransferase. The coupling reaction utilizes [14C]glycine and the bile acid-CoA is quantitatively converted to [14C]glycobile acid. The [14C]glycobile acid is isolated by solvent extraction and quantitated by liquid scintillation counting. The method is shown to be accurate, highly sensitive, and applicable to a wide variety of bile acids.  相似文献   

8.
A rapid, specific, and sensitive radioassay for measuring bile acid CoA:glycine/taurine: N-acyltransferase (EC 2.3.1) has been developed. In this assay, 3H-labeled amino acids (glycine or taurine) are conjugated with unlabeled bile acid CoA derivatives to form 3H-labeled bile acid amidates. Following incubation, the 3H-labeled bile acid amidate is separated from the unreacted amino acid by an n-butanol extraction method. The extraction procedure was developed by evaluating the effects of buffer concentration and pH on the recovery of radiolabeled bile acid amidate standards in the presence of human hepatic cytosol. Highest recovery (greater than 90%) of bile acid amidate standards occurred under acidic conditions (pH 2) in the presence of 1% (w/v) SDS. When the radioassay and accompanying n-butanol extraction procedure were utilized to study the amidation of glycine or taurine with cholic acid in human hepatic cytosol, a single peak of radioactivity corresponding with either authentic glycocholate or taurocholate was detected in the n-butanol phase by high-performance liquid chromatography. This assay for bile acid CoA:glycine/taurine: N-acyltransferase activity was linear with incubation time and protein concentration. This assay should be useful in the biochemical studies of this enzyme, as well as in the examination of bile acid amidation in clinical liver specimens.  相似文献   

9.
A simple ion-exchange chromatographic method for the separation of bile acid mixtures is described. The method employs Dowex 1 as anion exchanger and mixtures of aqueous ethanol and hydrochloric acid as eluants. The use of mixtures in which both the ethanol and acid concentrations are varied has permitted a clear separation of the major bile acid groups (nonconjugated, glycine conjugated, and taurine conjugated bile acids).  相似文献   

10.
We report a sensitive and robust method to determine cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA), ursodeoxycholic acid (UDCA), and their taurine- and glycine-conjugate concentrations in human plasma using liquid chromatography–tandem mass spectrometry. Activated charcoal was utilized to prepare bile acid-free plasma, which served as the biological matrix for the preparation of standard and quality control samples. Plasma sample preparation involved solid-phase extraction. A total of 16 bile acids and 5 internal standards were separated on a reverse column by gradient elution and detected by tandem mass spectrometry in negative ion mode. The calibration curve was linear for all the bile acids over a range of 0.005–5 μmol/L. The extraction recoveries for all the analytes fell in the range of 88–101%. Intra-day and inter-day coefficients of variation were all below 10%. A stability test showed that all the bile acids were stable in plasma for at least 6 h at room temperature, at least three freeze–thaw cycles, in the −70 °C or −20 °C freezer for 2 months, and also in the reconstitution solution at 8 °C for 48 h. Comparison of the matrix effect of bile acid-free plasma with that of real plasma indicated that the charcoal purification procedure did not affect the properties of charcoal-purified plasma as calibration matrix. This method has been used to determine the bile acid concentrations in more than 300 plasma samples from healthy individuals. In conclusion, this method is suitable for the simultaneous quantification of individual bile acids in human plasma.  相似文献   

11.
S Onishi  S Itoh    Y Ishida 《The Biochemical journal》1982,204(1):135-139
An accurate and sensitive method that involves the group separations of serum bile acids (i.e. free and glycine- and taurine-conjugated bile acid fractions) by ion-exchange chromatography on piperidinohydroxypropyl-Sephadex LH-20 is described. Each group was then analysed by high-pressure liquid chromatography by using the post-column reaction technique with immobilized 3 alpha-hydroxy steroid dehydrogenase. The bile acid patterns in the umbilical venous serum samples were analysed by this method. Taurochenodeoxycholate predominated in the umbilical blood.  相似文献   

12.
We developed a highly sensitive and quantitative method to detect bile acid 3-sulfates in human urine employing liquid chromatography/electrospray ionization-tandem mass spectrometry. This method allows simultaneous analysis of bile acid 3-sulfates, including nonamidated, glycine-, and taurine-conjugated bile acids, cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), ursodeoxycholic acid (UDCA), and lithocholic acid (LCA), using selected reaction monitoring (SRM) analysis. The method was applied to analyze bile acid 3-sulfates in human urine from healthy volunteers. The results indicated an unknown compound with the nonamidated common bile acid 3-sulfates on the chromatogram obtained by the selected reaction monitoring analysis. By comparison of the retention behavior and MS/MS spectrum of the unknown peak with the authentic specimen, the unknown compound was identified as 3beta,12alpha-dihydroxy-5beta-cholanoic acid 3-sulfate.  相似文献   

13.
《Biosensors》1989,4(6):373-380
A two-barrel organic ion-sensitive microelectrode has been developed to electrochemically detect histamine activity. The synthesis of the histaminesensitive liquid ion exchanger, composed of tetrafluorophenylboron histamine plus 3-nitro-o-xylol, and the construction of the two-barrel microelectrode (0.1–0.5 μm tip diameter) sensitive to histamine based on such an exchanger is reported. The calibration curves, their slope, selectivity, stability and detection limits for different solutions are described. High selectivity for Na+, K+, Ca2+ was observed.  相似文献   

14.
Several liquid membrane microelectrodes sensitive to bile acids (two barrel, tip diameter about 0.5 micron) are described. The results of different liquid ion exchangers such as Aliquat 336/decanol, trioctylmethylammonium/decanol, hexadecyltrimethylammonium/decanol, benzyldimethylhexadecylammonium/decanol, hexadecyltributylammonium/5% hexachlorobenzene + 0.5% bromoacetanilide in o-dichlorobenzene are compared with each other, and the better one among them is the mixture of benzyldimethylhexadecylammonium cholate/decanol with hexadecyltributylammonium taurocholate/5% hexachlorobenzene + 0.5% bromoacetanilide in o-dichlorobenzene because of its quicker response time and low drift. The calibration curves, slopes, test limits, selective coefficients, drifts, and response times of the various bile-acids-sensitive microelectrodes in different calibration solutions were demonstrated and compared with each other.  相似文献   

15.
Eubacterium species V.P.I. 12708 has inducible bile acid 7-dehydroxylase activity that can use either 7 alpha or 7 beta bile acids as substrates. Cell extracts prepared from bacteria grown in the presence of cholic acid catalyzed the rapid conversion of free bile acids into a highly polar bile acid metabolite (HPBA). This conjugation activity co-eluted with bile acid 7-dehydroxylase activity on high performance gel filtration chromatography (GFC). The HPBA was purified by a combination of high performance GFC and reverse-phase high performance liquid chromatography (HPLC). The intact HPBA eluted earlier from reverse-phase HPLC than deoxycholyl-CoA and had a Mr of 1102 by Bio-Gel P-2 (GFC). The HPBA had an absorption peak at 255 nm and was sensitive to treatment with phosphodiesterase I or nucleotide pyrophosphatase. The HPBA has a free phosphate as shown by an increase in elution volume on reverse-phase HPLC following treatment with alkaline phosphatase. Treatment of the purified HPBA with nucleotide pyrophosphate plus alkaline phosphatase yielded adenosine, whereas, treatment with nucleotide pyrophosphatase alone generated 5',3'-ADP. A bile acid metabolite was also generated by nucleotide pyrophosphatase treatment. The bile acid metabolite had different chromatographic properties (HPLC and TLC) than the corresponding free bile acid. Gas liquid chromatography-mass spectrometry showed the bile acid metabolite to be 12 alpha-hydroxy-3-oxo-4-cholenoic acid. We hypothesize that the HPBA is an intermediate in 7-dehydroxylation and consists of this compound linked at the C-24 with an anhydride bond to the beta phosphate (5') of ADP-3'-phosphate. These results suggest a novel mechanism of bile acid 7 alpha/7 beta-dehydroxylation in Eubacterium sp. V.P.I. 12708.  相似文献   

16.
The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity.  相似文献   

17.
18.
Gallstone prevention and dissolution were studied in a mouse model of cholesterol cholelithiasis using hyocholic acid (3 alpha, 6 alpha, 7 alpha-trihydroxy-5 beta-cholanic acid). Addition of hyocholic acid, 0.1 or 0.3%, in the lithogenic diet (1% cholesterol + 0.5% cholic acid) prevented the formation of cholesterol monohydrate crystals in 70 and 90% of cases, respectively. On the other hand, chow diet supplemented with 0.1 or 0.3% hyocholic acid dissolved cholesterol crystals in lithiasic mice in, respectively, 80 and 100% of cases within 12 days. In both protocols, biles were largely supersaturated with cholesterol; lecithin-cholesterol lamellar liquid crystals were responsible for the transport of the excess cholesterol content. The percentage of hydrophilic bile salts (hyocholic acid, hyodeoxycholic acid, beta-muricholic acid) in bile, although moderate (15-50% of total bile salts), appears to induce such liquid crystalline dispersion. This study demonstrates that the balance between hydrophilic and hydrophobic bile salts plays a major role in the prevention and dissolution of cholesterol crystals. It is also shown that the desaturation of biliary cholesterol is not a prerequisite for gallstone dissolution.  相似文献   

19.
We report a sensitive, generic method for quantitative profiling of bile acids and other endogenous metabolites in small quantities of various biological fluids and tissues. The method is based on a straightforward sample preparation, separation by reversed-phase high performance liquid-chromatography mass spectrometry (HPLC-MS) and electrospray ionisation in the negative ionisation mode (ESI-). Detection is performed in full scan using the linear ion trap Fourier transform mass spectrometer (LTQ-FTMS) generating data for many (endogenous) metabolites, not only bile acids. A validation of the method in urine, plasma and liver was performed for 17 bile acids including their taurine, sulfate and glycine conjugates. The method is linear in the 0.01-1muM range. The accuracy in human plasma ranges from 74 to 113%, in human urine 77 to 104% and in mouse liver 79 to 140%. The precision ranges from 2 to 20% for pooled samples even in studies with large number of samples (n>250). The method was successfully applied to a multi-compartmental APOE*3-Leiden mouse study, the main goal of which was to analyze the effect of increasing dietary cholesterol concentrations on hepatic cholesterol homeostasis and bile acid synthesis. Serum and liver samples from different treatment groups were profiled with the new method. Statistically significant differences between the diet groups were observed regarding total as well as individual bile acid concentrations.  相似文献   

20.
The glycine conjugate of 3 beta-hydroxy-5-cholen-24-oic acid and its sulfate labeled with deuterium at the C-2, -4, and -23 positions were synthesized. A highly sensitive and specific quantitative assay of the bile acid has been developed by selected ion monitoring in gas chromatography-mass spectrometry of the methyl ester trimethylsilyl ether derivatives using the deuterium labeled conjugates as internal standards. Calibration curves for the bile acid and its sulfate exhibited a linear relationship over the range of 0.01-100 micrograms/ml in human serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号