首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein disulfide isomerase (PDI) is the archetypal enzyme involved in the formation and reshuffling of disulfide bonds in the endoplasmic reticulum (ER). PDI achieves its redox function through two highly conserved thioredoxin domains, and PDI can also operate as an ER chaperone. The substrate specificities and the exact functions of most other PDI family proteins remain important unsolved questions in biology. Here, we characterize a new and striking member of the PDI family, which we have named protein disulfide isomerase-like protein of the testis (PDILT). PDILT is the first eukaryotic SXXC protein to be characterized in the ER. Our experiments have unveiled a novel, glycosylated PDI-like protein whose tissue-specific expression and unusual motifs have implications for the evolution, catalytic function, and substrate selection of thioredoxin family proteins. We show that PDILT is an ER resident glycoprotein that liaises with partner proteins in disulfide-dependent complexes within the testis. PDILT interacts with the oxidoreductase Ero1alpha, demonstrating that the N-terminal cysteine of the CXXC sequence is not required for binding of PDI family proteins to ER oxidoreductases. The expression of PDILT, in addition to PDI in the testis, suggests that PDILT performs a specialized chaperone function in testicular cells. PDILT is an unusual PDI relative that highlights the adaptability of chaperone and redox function in enzymes of the endoplasmic reticulum.  相似文献   

2.
Stability and function of a large number of proteins are crucially dependent on the presence of disulfide bonds. Recent genome analysis has pointed out an important role of disulfide bonds for the structural stabilization of intracellular proteins from hyperthermophilic archaea and bacteria. These findings contradict the conventional view that disulfide bonds are rare in those proteins. A specific protein, known as protein disulfide oxidoreductase (PDO) is recognized as a potential key enzyme in intracellular disulfide-shuffling in hyperthermophiles. The structure of this protein consists of two combined thioredoxin-related units which together, in tandem-like manner, form a closed protein domain. Each of these units contains a distinct CXXC active site motif. Both sites seem to have different redox properties. A relation to eukaryotic protein disulfide isomerase is suggested by the observed structural and functional characteristics of the protein. Enzymological studies have revealed that both, the archaeal and bacterial forms of this protein show oxidative and reductive activity and are able to isomerize protein disulfides. The variety of active site disulfides found in PDO’s from hyperthermophiles is puzzling. It is assumed, that PDO enzymes in hyperthermophilic archaea and bacteria may be part of a complex system involved in the maintenance of protein disulfide bonds.  相似文献   

3.
Ladenstein R  Ren B 《The FEBS journal》2006,273(18):4170-4185
Disulfide bonds are required for the stability and function of a large number of proteins. Recently, the results from genome analysis have suggested an important role for disulfide bonds concerning the structural stabilization of intracellular proteins from hyperthermophilic Archaea and Bacteria, contrary to the conventional view that structural disulfide bonds are rare in proteins from Archaea. A specific protein, known as protein disulfide oxidoreductase (PDO) is recognized as a potential key player in intracellular disulfide-shuffling in hyperthermophiles. The structure of this protein shows a combination of two thioredoxin-related units with low sequence identity which together, in tandem-like manner, form a closed protein domain. Each of these units contains a distinct CXXC active site motif. Due to their estimated conformational energies, both sites are likely to have different redox properties. The observed structural and functional characteristics suggest a relation to eukaryotic protein disulfide isomerase. Functional studies have revealed that both the archaeal and bacterial forms of this protein show oxidative and reductive activity and are able to isomerize protein disulfides. The physiological substrates and reduction systems, however, are to date unknown. The variety of active site disulfides found in PDOs from hyperthermophiles is puzzling. Nevertheless, the catalytic function of any PDO is expected to be correlated with the redox properties of its active site disulfides CXXC and with the distinct nature of its redox environment. The residues around the two active sites form two grooves on the protein surface. In analogy to a similar groove in thioredoxin, both grooves are suggested to constitute the substrate binding sites of PDO. The direct neighbourhood of the grooves and the different redox properties of both sites may favour sequential reactions in protein disulfide shuffling, like reduction followed by oxidation. A model for peptide binding by PDO is proposed to be derived from the analysis of crystal packing contacts mimicking substrate binding interactions. It is assumed, that PDO enzymes in hyperthermophilic Archaea and Bacteria may be part of a complex system involved in the maintenance of protein disulfide bonds. The regulation of disulfide bond formation may be dependent on a distinct interplay of thermodynamic and kinetic effects, including functional asymmetry and substrate-mediated protection of the active sites, in analogy to the situation in protein disulfide isomerase. Numerous questions related to the function of PDO enzymes in hyperthermophiles remain unanswered to date, but can probably successfully be studied by a number of approaches, such as first-line genetic and in vivo studies.  相似文献   

4.
蛋白质二硫键异构酶家族的结构与功能   总被引:1,自引:0,他引:1  
蛋白质二硫键异构酶(protein disulfide isomerase,PDI)家族是一类在内质网中起作用的巯基-二硫键氧化还原酶.它们通常含有CXXC(Cys-Xaa-Xaa-Cys,CXXC)活性位点,活性位点的两个半胱氨酸残基可催化底物二硫键的形成、异构及还原.所有PDI家族成员包含至少一个约100个氨基酸残基的硫氧还蛋白同源结构域.PDI家族的主要职能是催化内质网中新生肽链的氧化折叠,另外在内质网相关的蛋白质降解途径(ERAD)、蛋白质转运、钙稳态、抗原提呈及病毒入侵等方面也起重要作用.  相似文献   

5.
The thiol/disulfide oxidoreductase DsbA is the strongest oxidant of the thioredoxin superfamily and is required for efficient disulfide bond formation in the periplasm of Escherichia coli. To determine the importance of the redox potential of the final oxidant in periplasmic protein folding, we have investigated the ability of the most reducing thiol/disulfide oxidoreductase, E.coli thioredoxin, of complementing DsbA deficiency when secreted to the periplasm. In addition, we secreted thioredoxin variants with increased redox potentials as well as the catalytic a-domain of human protein disulfide isomerase (PDI) to the periplasm. While secreted wild-type thioredoxin and the most reducing thioredoxin variant could not replace DsbA, all more oxidizing thioredoxin variants as well as the PDI a-domain could complement DsbA deficiency in a DsbB-dependent manner. There is an excellent agreement between the activity of the secreted thioredoxin variants in vivo and their ability to oxidize polypeptides fast and quantitatively in vitro. We conclude that the redox potential of the direct oxidant of folding proteins and in particular its reactivity towards reduced polypeptides are crucial for efficient oxidative protein folding in the bacterial periplasm.  相似文献   

6.
In vitro, protein disulfide isomerase (Pdi1p) introduces disulfides into proteins (oxidase activity) and provides quality control by catalyzing the rearrangement of incorrect disulfides (isomerase activity). Protein disulfide isomerase (PDI) is an essential protein in Saccharomyces cerevisiae, but the contributions of the catalytic activities of PDI to oxidative protein folding in the endoplasmic reticulum (ER) are unclear. Using variants of Pdi1p with impaired oxidase or isomerase activity, we show that isomerase-deficient mutants of PDI support wild-type growth even in a strain in which all of the PDI homologues of the yeast ER have been deleted. Although the oxidase activity of PDI is sufficient for wild-type growth, pulse-chase experiments monitoring the maturation of carboxypeptidase Y reveal that oxidative folding is greatly compromised in mutants that are defective in isomerase activity. Pdi1p and one or more of its ER homologues (Mpd1p, Mpd2p, Eug1p, Eps1p) are required for efficient carboxypeptidase Y maturation. Consistent with its function as a disulfide isomerase in vivo, the active sites of Pdi1p are partially reduced (32 +/- 8%) in vivo. These results suggest that PDI and its ER homologues contribute both oxidase and isomerase activities to the yeast ER. The isomerase activity of PDI can be compromised without affecting growth and viability, implying that yeast proteins that are essential under laboratory conditions may not require efficient disulfide isomerization.  相似文献   

7.
Protein disulfide–isomerase (PDI) was the first protein-folding catalyst to be characterized, half a century ago. It plays critical roles in a variety of physiological events by displaying oxidoreductase and redox-regulated chaperone activities. This review provides a brief history of the identification of PDI as both an enzyme and a molecular chaperone and of the recent advances in studies on the structure and dynamics of PDI, the substrate binding and release, and the cooperation with its partners to catalyze oxidative protein folding and maintain ER redox homeostasis. In this review, we highlight the structural features of PDI, including the high interdomain flexibility, the multiple binding sites, the two synergic active sites, and the redox-dependent conformational changes.  相似文献   

8.
Human protein-disulfide isomerase (hPDI)-related protein (hPDIR), which we previously cloned from a human placental cDNA library (Hayano, T., and Kikuchi, M. (1995) FEBS Lett. 372, 210-214), and its mutants were expressed in the Escherichia coli pET system and purified by sequential nickel affinity resin chromatography. Three thioredoxin motifs (CXXC) of purified hPDIR were found to contribute to its isomerase activity with a rank order of CGHC > CPHC > CSMC, although both the isomerase and chaperone activities of this protein were lower than those of hPDI. Screening for hPDIR-binding proteins using a T7 phage display system revealed that alpha1-antitrypsin binds to hPDIR. Surface plasmon resonance experiments demonstrated that alpha1-antitrypsin interacts with hPDIR, but not with hPDI or human P5 (hP5). Interestingly, the rate of oxidative refolding of alpha1-antitrypsin with hPDIR was much higher than with hPDI or hP5. Thus, the substrate specificity of hPDIR differed from that associated with isomerase activity, and the contribution of the CSMC motif to the oxidative refolding of alpha1-antitrypsin was the most definite of the three (CSMC, CGHC, CPHC). Substitution of SM and PH in the CXXC motifs with GH increased isomerase activity and decreased oxidative refolding. In contrast, substitution of GH and PH with SM decreased isomerase activity and increased oxidative refolding. Because CXXC motif mutants lacking isomerase activity retain chaperone activity for the substrate rhodanese, it is clear that, similar to PDI and hP5, the isomerase and chaperone activities of hPDIR are independent. These results suggest that the central dipeptide of the CXXC motif is critical for both redox activity and substrate specificity.  相似文献   

9.
Thioredoxins and glutaredoxins as facilitators of protein folding   总被引:3,自引:0,他引:3  
Thiol-disulfide oxidoreductase systems of bacterial cytoplasm and eukaryotic cytosol favor reducing conditions and protein thiol groups, while bacterial periplasm and eukaryotic endoplasmatic reticulum provide oxidizing conditions and a machinery for disulfide bond formation in the secretory pathway. Oxidoreductases of the thioredoxin fold superfamily catalyze steps in oxidative protein folding via protein-protein interactions and covalent catalysis to act as chaperones and isomerases of disulfides to generate a native fold. The active site dithiol/disulfide of thioredoxin fold proteins is CXXC where variations of the residues inside the disulfide ring are known to increase the redox potential like in protein disulfide isomerases. In the catalytic mechanism thioredoxin fold proteins bind to target proteins through conserved backbone-backbone hydrogen bonds and induce conformational changes of the target disulfide followed by nucleophilic attack by the N-terminally located low pK(a) Cys residue. This generates a mixed disulfide covalent bond which subsequently is resolved by attack from the C-terminally located Cys residue. This review will focus on two members of the thioredoxin superfamily of proteins known to be crucial for maintaining a reduced intracellular redox state, thioredoxin and glutaredoxin, and their potential functions as facilitators and regulators of protein folding and chaperone activity.  相似文献   

10.
Chaperone activity of DsbC.   总被引:7,自引:0,他引:7  
DsbC, a periplasmic disulfide isomerase of Gram-negative bacteria, displays about 30% of the activities of eukaryotic protein disulfide isomerase (PDI) as isomerase and as thiol-protein oxidoreductase. However, DsbC shows more pronounced chaperone activity than does PDI in promoting the in vitro reactivation and suppressing aggregation of denatured D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) during refolding. Carboxymethylation of DsbC at Cys98 decreases its intrinsic fluorescence, deprives of its enzyme activities, but lowers only partly its chaperone activity in assisting GAPDH reactivation. Simultaneous presence of DsbC and PDI in the refolding buffer shows an additive effect on the reactivation of GAPDH. The assisted reactivation of GAPDH and the protein disulfide oxidoreductase activity of DsbC can both be inhibited by scrambled and S-carboxymethylated RNases, but not by shorter peptides, including synthetic 10- and 14-mer peptides and S-carboxymethylated insulin A chain. In contrast, all the three peptides and the two nonnative RNases inhibit PDI-assisted GAPDH reactivation and the reductase activity of PDI. DsbC assists refolding of denatured and reduced lysozyme to a higher level than does PDI in phosphate buffer and does not show anti-chaperone activity in HEPES buffer. Like PDI, DsbC is also a disulfide isomerase with chaperone activity but may recognize different folding intermediates as does PDI.  相似文献   

11.
A potential role in disulfide bond formation in the intracellular proteins of thermophilic organisms has recently been attributed to a new family of protein disulfide isomerase (PDI)-like proteins. Members of this family are characterized by a molecular mass of about 26kDa and by two Trx folds, each comprising a CXXC active site motif. We report on the functional and structural characterization of a new member of this family, which was isolated from the thermophilic bacterium Aquifex aeolicus (AaPDO). Functional studies have revealed the high catalytic efficiency of this enzyme in reducing, oxidizing and isomerizing disulfide bridges. Site-directed mutagenesis experiments have suggested that its two active sites have similar functional properties, i.e. that each of them imparts partial activity to the enzyme. This similarity was confirmed by the analysis of the enzyme crystal structure, which points to similar geometrical parameters and solvent accessibilities for the two active sites. The results demonstrated that AaPDO is the most PDI-like of all prokaryotic proteins so far known. Thus, further experimental studies on this enzyme are likely to provide important information on the eukaryotic homologue.  相似文献   

12.
Rancy PC  Thorpe C 《Biochemistry》2008,47(46):12047-12056
The flavin-dependent quiescin-sulfhydryl oxidase (QSOX) inserts disulfide bridges into unfolded reduced proteins with the reduction of molecular oxygen to form hydrogen peroxide. This work investigates how QSOX and protein disulfide isomerase (PDI) cooperate in vitro to generate native pairings in two unfolded reduced proteins: ribonuclease A (RNase, four disulfide bonds and 105 disulfide isomers of the fully oxidized protein) and avian riboflavin binding protein (RfBP, nine disulfide bonds and more than 34 million corresponding disulfide pairings). Experiments combining avian or human QSOX with up to 200 muM avian or human reduced PDI show that the isomerase is not a significant substrate of QSOX. Both reduced RNase and RfBP can be efficiently refolded in an aerobic solution containing micromolar concentrations of reduced PDI and nanomolar levels of QSOX without any added oxidized PDI or glutathione redox buffer. Refolding of RfBP is followed continuously using the complete quenching of the fluorescence of free riboflavin that occurs on binding to apo-RfBP. The rate of refolding is half-maximal at 30 muM reduced PDI when the reduced client protein (1 muM) is used in the presence of 30 nM QSOX. The use of high concentrations of PDI, in considerable excess over the folding protein client, reflects the concentration prevailing in the lumen of the endoplasmic reticulum and allows the redox poise of these in vitro experiments to be set with oxidized and reduced PDI. In the absence of either QSOX or redox buffer, the fastest refolding of RfBP is accomplished with excess reduced PDI and just enough oxidized PDI to generate nine disulfides in the protein client. These in vitro experiments are discussed in terms of current models for oxidative folding in the endoplasmic reticulum.  相似文献   

13.
The formation of disulfide bonds between cysteine residues is a rate-limiting step in protein folding. To control this oxidative process, different organisms have developed different systems. In bacteria, disulfide bond formation is assisted by the Dsb protein family; in eukarya, disulfide bond formation and rearrangement are catalyzed by PDI. In thermophilic organisms, a potential key role in disulfide bond formation has recently been ascribed to a new cytosolic Protein Disulphide Oxidoreductase family whose members have a molecular mass of about 26 kDa and are characterized by two thioredoxin folds comprising a CXXC active site motif each. Here we report on the functional and structural characterization of ApPDO, a new member of this family, which was isolated from the archaeon Aeropyrum pernix K1. Functional studies have revealed that ApPDO can catalyze the reduction, oxidation and isomerization of disulfide bridges. Structural studies have shown that this protein has two CXXC active sites with fairly similar geometrical parameters typical of a stable conformation. Finally, a theoretical calculation of the cysteine pK(a) values has suggested that the two active sites have similar functional properties and each of them can impart activity to the enzyme. Our results are evidence of functional similarity between the members of the Protein Disulphide Oxidoreductase family and the eukaryotic enzyme PDI. However, as the different three-dimensional features of these two biological systems strongly suggest significantly different mechanisms of action, further experimental studies will be needed to make clear how different three-dimensional structures can result in systems with similar functional behavior.  相似文献   

14.
X Lu  H F Gilbert  J W Harper 《Biochemistry》1992,31(17):4205-4210
Protein disulfide isomerase (PDI) catalyzes the oxidative folding of proteins containing disulfide bonds by increasing the rate of disulfide bond rearrangements which normally occur during the folding process. The amino acid sequences of the N- and C-terminal redox active sites (PWCGHCK) in PDI are completely conserved from yeast to man and display considerable identity with the redox-active center of thioredoxin (EWCGPCK). Available data indicate that the two thiol/disulfide centers of PDI can function independently in the isomerase reaction and that the cysteine residues in each active site are essential for catalysis. To evaluate the role of residues flanking the active-site cysteines of PDI in function, a variety of mutations were introduced into the N-terminal active site of PDI within the context of both a functional C-terminal active site and an inactive C-terminal active site in which serine residues replaced C379 and C382. Replacement of non-cysteine residues (W34 to Ser, G36 to Ala, and K39 to Arg) resulted in only a modest reduction in catalytic activity in both the oxidative refolding of RNase A and the reduction of insulin (10-27%), independent of the status of the C-terminal active site. A somewhat larger effect was observed with the H37P mutation where approximately 80% of the activity attributable to the N-terminal domain (approximately 40%) was lost. However, the H37P mutant N-terminal site expressed within the context of an inactive C-terminal domain exhibits 30% activity, approximately 70% of the activity of the N-terminal site alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The rapid formation of native disulfide bonds in cellular proteins is necessary for the efficient use of cellular resources. This process is catalyzed in vitro by protein disulfide isomerase (PDI), with the PDI1 gene being essential for the viability of Saccharomyces cerevisiae. PDI is a member of the thioredoxin (Trx) family of proteins, which have the active-site motif CXXC. PDI contains two Trx domains as well as two domains unrelated to the Trx family. We find that the gene encoding Escherichia coli Trx is unable to complement PDI1 null mutants of S.cerevisiae. Yet, Trx can replace PDI if it is mutated to have a CXXC motif with a disulfide bond of high reduction potential and a thiol group of low pKa. Thus, an enzymic thiolate is both necessary and sufficient for the formation of native disulfide bonds in the cell.  相似文献   

16.
The major oxidative folding pathways of bovine pancreatic ribonuclease A at pH 8.0 and 25 degrees C involve a pre-equilibrium steady state among ensembles of intermediates with zero, one, two, three and four disulfide bonds. The rate-determining steps are the reshuffling of the unstructured three-disulfide ensemble to two native-like three-disulfide species, des-[65-72] and des-[40-95], that convert to the native structure during oxidative formation of the fourth disulfide bond. Under the same regeneration conditions, with oxidized and reduced DTT, used previously for kinetic oxidative-folding studies of this protein, the addition of 4 microM protein disulfide isomerase (PDI) was found to lead to catalysis of each disulfide-formation step, including the rate-limiting rearrangement steps in which the native-like intermediates des-[65-72] and des-[40-95] are formed. The changes in the distribution of intermediates were also determined in the presence and absence of PDI at three different temperatures (with the DTT redox system) as well as at 25 degrees C (with the glutathione redox system). The results indicate that the acceleration of the formation of native protein by PDI, which we observed earlier, is due to PDI catalysis of each of the intermediate steps without changing the overall pathways or folding mechanism.  相似文献   

17.
The velocity of the oxidative renaturation of reduced ribonuclease A catalyzed by protein disulfide isomerase (PDI) is strongly dependent on the composition of a glutathione/glutathione disulfide redox buffer. As with the uncatalyzed, glutathione-mediated oxidative folding of ribonuclease, the steady-state velocity of the PDI-catalyzed reaction displays a distinct optimum with respect to both the glutathione (GSH) and glutathione disulfide (GSSG) concentrations. Optimum activity is observed at [GSH] = 1.0 mM and [GSSG] = 0.2 mM. The apparent kcat at saturating RNase concentration is 0.46 +/- 0.05 mumol of RNase renatured min-1 (mumol of PDI)-1 compared to the apparent first-order rate constant for the uncatalyzed reaction of 0.02 +/- 0.01 min-1. Changes in GSH and GSSG concentration have a similar effect on the rate of both the PDI-catalyzed and uncatalyzed reactions except under the more oxidizing conditions employed, where the catalytic effectiveness of PDI is diminished. The ratio of the velocity of the catalyzed reaction to that of the uncatalyzed reaction increases as the quantity [GSH]2/[GSSG] increases and approaches a constant, limiting value at [GSH]2/[GSSG] greater than 1 mM, suggesting that a reduced, dithiol form of PDI is required for optimum activity. As long as the glutathione redox buffer is sufficiently reducing to maintain PDI in an active form [( GSH]2/[GSSG] greater than 1 mM), the rate acceleration provided by PDI is reasonably constant, although the actual rate may vary by more than an order of magnitude. PDI exhibits half of the maximum rate acceleration at a [GSH]2/[GSSG] of 0.06 +/- 0.01 mM.  相似文献   

18.
Protein disulfide isomerase (PDI) is an essential protein folding assistant of the eukaryotic endoplasmic reticulum that catalyzes both the formation of disulfides during protein folding (oxidase activity) and the isomerization of disulfides that may form incorrectly (isomerase activity). Catalysis of thiol-disulfide exchange by PDI is required for cell viability in Saccharomyces cerevisiae, but there has been some uncertainty as to whether the essential role of PDI in the cell is oxidase or isomerase. We have studied the ability of PDI constructs with high oxidase activity and very low isomerase activity to complement the chromosomal deletion of PDI1 in S. cerevisiae. A single catalytic domain of yeast PDI (PDIa') has 50% of the oxidase activity but only 5% of the isomerase activity of wild-type PDI in vitro. Titrating the expression of PDI using the inducible/repressible GAL1-10 promoter shows that the amount of wild-type PDI protein needed to sustain a normal growth rate is 60% or more of the amount normally expressed from the PDI1 chromosomal location. A single catalytic domain (PDIa') is needed in molar amounts that are approximately twice as high as those required for wild-type PDI, which contains two catalytic domains. This comparison suggests that high (>60%) PDI oxidase activity is critical to yeast growth and viability, whereas less than 6% of its isomerase activity is needed.  相似文献   

19.
Changes in assisted protein folding are largely unexplored in diabetes. In the present studies, we have identified a reductive shift in the redox status of rat liver microsomes after 4 weeks of streptozotocin-induced diabetes. This change was reflected by a significant increase in the total- and protein-sulfhydryl content, as well as in the free sulfhydryl groups of the major protein disulfide isomerases (PDIs), the 58 kDa PDI and the 57 kDa ERp57 but not other chaperones. A parallel decrease of the protein-disulfide oxidoreductase activity was detected in the microsomal fraction of diabetic livers. The oxidant of PDI, Ero1-Lalpha showed a more oxidized status in diabetic rats. Our results reveal major changes in the redox status of the endoplasmic reticulum and its redox chaperones in diabetic rats, which may contribute to the defective protein secretion of the diabetic liver.  相似文献   

20.
At low concentrations of a glutathione redox buffer, the protein disulfide isomerase (PDI) catalyzed oxidative renaturation of reduced ribonuclease A exhibits a rapid but incomplete activation of ribonuclease, which precedes the steady-state reaction. This behavior can be attributed to a GSSG-dependent partitioning of the substrate, reduced ribonuclease, between two classes of thiol/disulfide redox forms, those that can be converted to active ribonuclease at low concentrations of GSH and those that cannot. With catalytic concentrations of PDI and near stoichiometric concentrations of glutathione disulfide, approximately 4 equiv (2 equiv of ribonuclease disulfide) of GSH are formed very rapidly followed by a slower formation of GSH, which corresponds to an additional 2 disulfide bond equiv. The rapid formation of RNase disulfide bonds and the subsequent rearrangement of incorrect disulfide isomers to active RNase are both catalyzed by PDI. In the absence of GSSG or other oxidants, disulfide bond equivalents of PDI can be used to form disulfide bonds in RNase in a stoichiometric reaction. In the absence of a glutathione redox buffer, the rate of reduced ribonuclease regeneration increases markedly with increasing PDI concentrations below the equivalence point; however, PDI in excess over stoichiometric concentrations inhibits RNase regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号