首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behaviour of herbivorous insects is influenced by their nutritional state. Nutrition-induced behavioural changes are often interpreted as adaptive mechanisms for controlling nutrient intake; however, their influence on other life history traits has received far less attention. We investigated the effect of food quality and distribution on the behaviour and phase state of desert locusts, Schistocerca gregaria Forsk?l (Orthoptera, Acrididae), which change from the 'solitarious' to the 'gregarious' phase in response to population density. Phase change involves many morphological, physiological and behavioural changes. Solitarious insects are cryptic whereas gregarious locusts aggregate. Individual phase change is stimulated by mechanical contact with other locusts. A clumped resource distribution promotes change to the gregarious phase by increasing crowding and contact between individuals. In this study, we found that the effect of food distribution on locust phase depended on the nutritional quality of the food. We used three synthetic food treatments: near optimal, dilute and a choice of two unbalanced but complementary foods. Clumped resource distribution led to increased gregarization in the dilute and the complementary diet treatments. This effect was particularly pronounced on the complementary foods, owing to the interaction of crowding and locomotion. Gregarization was most pronounced in the dilute diet treatment, owing to increased activity. These diet-induced effects are explained in terms of behavioural changes in locomotion, quiescence and feeding that are consistent with what is known from earlier work on locust feeding behaviour and behavioural phase change. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

2.
Locusts are short horned grasshoppers that exhibit two behaviour types depending on their local population density. These are: solitarious, where they will actively avoid other locusts, and gregarious where they will seek them out. It is in this gregarious state that locusts can form massive and destructive flying swarms or plagues. However, these swarms are usually preceded by the aggregation of juvenile wingless locust nymphs. In this paper we attempt to understand how the distribution of food resources affect the group formation process. We do this by introducing a multi-population partial differential equation model that includes non-local locust interactions, local locust and food interactions, and gregarisation. Our results suggest that, food acts to increase the maximum density of locust groups, lowers the percentage of the population that needs to be gregarious for group formation, and decreases both the required density of locusts and time for group formation around an optimal food width. Finally, by looking at foraging efficiency within the numerical experiments we find that there exists a foraging advantage to being gregarious.  相似文献   

3.
A behavioural analysis of phase change in the desert locust   总被引:2,自引:0,他引:2  
A programme of research into phase change in the desert locust, Schistocerca gregaria, is described. The ability to change phase between solitarious and gregarious forms in response to population density is a key feature of locusts and is central to their occasional yet catastrophic impact on humans. Phase polymorphism is an extreme form of phenotypic plasticity. The most labile phase characteristic is behaviour. It is argued that a fully integrated study of behavioural phase change provides a powerful tool for understanding both the mechanisms of phase change and locust population dynamics, both of which offer possibilities for improved management and control of desert locust plagues. An assay for measuring behavioural phase-state in individual locusts was derived, based on logistic regression analysis. Experiments are described that used the assay to quantify the time-course of behavioural change, both within the life of individual locusts and across generations. The locust-related stimuli that provoke behavioural gregarization were investigated. Complex interactions were found between tactile, visual and olfactory stimuli, with the former exerting the strongest effect. Behavioural analysis also directed a study of the mechanisms whereby adult females exert an epigenetic influence over the phase-state of their developing offspring. Female locusts use their experience of the extent and recency of being crowded to predict the probability that their offspring will emerge into a high-density population, and alter the development of their embryos accordingly through a gregarizing agent added to the foam that surrounds the eggs at laying. There is also a less pronounced paternal influence on hatchling phase-state. An understanding of the time-course of behavioural phase change led to a study of the effect of the fine-scale distribution of resources in the environment on interactions between individual locusts, and hence on phase change. This, in turn, stimulated an exploration of the implications of individual behavioural phase change for population dynamics. Cellular automata models were derived that explore the relationships between population density, density of food resources and the distribution of resources in the environment. The results of the simulation showed how the extent of gregarization within a population increases with rising population size relative to food abundance and increasing concentration of food resources. Of particular interest was the emergence of critical zones across particular combinations of resource abundance, resource distribution and population size, where a solitarious population would rapidly gregarize. The model provided the basis for further laboratory and field experiments, which are described.  相似文献   

4.
Abstract

The results of aktograph experiments suggest that S. gregaria is primarily day‐active although its circadian clock can, to some extent, be synchronized by changes in both light and temperature. Low temperatures exert a threshold effect on activity. The nycthemeral rhythm of the desert locust is feeble in LD 12:12, even with fluctuating temperatures. This, is probably of adaptive significance. It certainly accords with the plastic and opportune nature of locust behaviour, upon which survival depends under the unpredictable conditions of the desert climate. For the insect must always be ready to exploit temporary and irregular amelorations of its harsh, arid environment. The desert locust, therefore, cannot afford to adopt rigid rhythms or behaviour patterns that might cause it to lose the benefits of a chance shower or to miss the temporary appearance of green grass. It is argued that the persistence of a rhythm fora short while could be due to an endogenous ‘clock’ or to an exogenous periodicity that continues briefly in constant conditions. It has been shown experimentally, however, that although locusts do not exhibit a marked periodicity under field conditions they, nevertheless, possess good circadian ‘clocks’ whose disclosure can be elicited by subjecting the insects to unnatural light‐dark régimes.  相似文献   

5.
Isolated and cultured neonatal cardiac myocytes contract spontaneously and cyclically. The contraction rhythms of two isolated cardiac myocytes, each of which beats at different frequencies at first, become synchronized after the establishment of mutual contacts, suggesting that mutual entrainment occurs due to electrical and/or mechanical interactions between two myocytes. The intracellular concentration of free Ca(2+) also changes rhythmically in association with the rhythmic contraction of myocytes (Ca(2+) oscillation), and such a Ca(2+) oscillation was also synchronized among cultured cardiac myocytes. In this study, we investigated whether intercellular communication other than via gap junctions was involved in the intercellular synchronization of intracellular Ca(2+) oscillation in spontaneously beating cultured cardiac myocytes. Treatment with either blockers of gap junction channels or an un-coupler of E-C coupling did not affect the intercellular synchronization of Ca(2+) oscillation. In contrast, treatment with a blocker of P2 purinoceptors resulted in the asynchronization of Ca(2+) oscillatory rhythms among cardiac myocytes. The present study suggested that the extracellular ATP-purinoceptor system was responsible for the intercellular synchronization of Ca(2+) oscillation among cardiac myocytes.  相似文献   

6.
Desert locusts (Schistocerca gregaria Forskål (Orthoptera: Acrididae)) change phase in response to population density. Solitarious insects avoid one another; when crowded, they shift to the gregarious phase and aggregate. Laboratory experiments and individual‐based modelling have shown that small‐scale resource distribution can affect locust phase state via an influence on crowding. Laboratory work has also shown that parental phase state is transmitted to offspring via maternal inheritance. These effects had not been investigated in the field previously. We maintained small populations of adult desert locusts in semi‐field enclosures with different distribution patterns of a single plant species (Hyoscyamus muticus L. (Solanaceae)). The offspring of locusts exposed to more clumped patterns of vegetation exhibited more gregarious behaviour when tested in a behavioural phase assay than did progeny from parents left in enclosures with more scattered vegetation. These effects on nymphal behaviour appeared to be mediated by influences of resource distribution on adult phase state. Phase state in small semi‐field populations was influenced by small‐scale vegetation distribution. Phase differences engendered by environmental structure were maintained in time and transmitted to progeny.  相似文献   

7.
We study the loss of synchronization of two partially coupled space-clamped Hodgkin-Huxley equations, with symmetric coupling. This models the coupling of two cells through an electrical synapse. For strong enough coupling it is known that all solutions of the equations approach a state where the two cells are perfectly synchronized, having the same behaviour at each moment. We describe the local bifurcations that arise when the coupling strength is reduced, using a mixture of analytical and numerical methods. We find that perfect synchrony is retained for very small positive values of the coupling strength, for almost all initial conditions. Although perfect synchrony is lost for negative values of the coupling constant, the system always retains some degree of synchronization until it becomes totally unstable. This happens in two ways: in many cases for almost all initial conditions the solutions still approach a perfectly synchronized state. Even when this is not true, the attracting solutions are still synchronized, with a half-period phase shift.  相似文献   

8.
Yamashita M 《The FEBS journal》2008,275(16):4022-4032
Synchronous Ca(2+) oscillation occurs in various cell types to regulate cellular functions. However, the mechanism for synchronization of Ca(2+) increases between cells remains unclear. Recently, synchronous oscillatory changes in the membrane potential of internal Ca(2+) stores were recorded using an organelle-specific voltage-sensitive dye [Yamashita et al. (2006) FEBS J273, 3585-3597], and an electrical coupling model of the synchronization of store potentials and Ca(2+) releases has been proposed [Yamashita (2006) FEBS Lett580, 4979-4983]. This model is based on capacitative coupling, by which transient voltage changes can be synchronized, but oscillatory slow potentials cannot be communicated. Another candidate mechanism is synchronization of action potentials and ensuing Ca(2+) influx through voltage-dependent Ca channels. The present study addresses the question of whether Ca(2+) increases are synchronized by action potentials, and how oscillatory store potentials are synchronized across the cells. Electrophysiological and Ca(2+)-sensitive fluorescence measurements in early embryonic chick retina showed that synchronous Ca(2+) oscillation was caused by releases of Ca(2+) from Ca(2+) stores without any evidence of action potentials in retinal neuroepithelial cells or newborn neurons. High-speed fluorescence measurement of store membrane potential surprisingly revealed that the synchronous oscillatory changes in the store potential were periodic repeats of a burst of high-frequency voltage fluctuations. The burst coincided with a Ca(2+) increase. The present study suggests that synchronization of Ca(2+) release is mediated by the high-frequency fluctuation in the store potential. Close apposition of the store membrane and plasma membrane in an epithelial structure would allow capacitative coupling across the cells.  相似文献   

9.
Spontaneous synchronization of coupled circadian oscillators   总被引:1,自引:0,他引:1       下载免费PDF全文
In mammals, the circadian pacemaker, which controls daily rhythms, is located in the suprachiasmatic nucleus (SCN). Circadian oscillations are generated in individual SCN neurons by a molecular regulatory network. Cells oscillate with periods ranging from 20 to 28 h, but at the tissue level, SCN neurons display significant synchrony, suggesting a robust intercellular coupling in which neurotransmitters are assumed to play a crucial role. We present a dynamical model for the coupling of a population of circadian oscillators in the SCN. The cellular oscillator, a three-variable model, describes the core negative feedback loop of the circadian clock. The coupling mechanism is incorporated through the global level of neurotransmitter concentration. Global coupling is efficient to synchronize a population of 10,000 cells. Synchronized cells can be entrained by a 24-h light-dark cycle. Simulations of the interaction between two populations representing two regions of the SCN show that the driven population can be phase-leading. Experimentally testable predictions are: 1), phases of individual cells are governed by their intrinsic periods; and 2), efficient synchronization is achieved when the average neurotransmitter concentration would dampen individual oscillators. However, due to the global neurotransmitter oscillation, cells are effectively synchronized.  相似文献   

10.
Density-dependent aposematism in the desert locust   总被引:1,自引:0,他引:1  
The ecological processes underlying locust swarm formation are poorly understood. Locust species exhibit phenotypic plasticity in numerous morphological, physiological and behavioural traits as their population density increases. These density-dependent changes are commonly assumed to be adaptations for migration under heterogeneous environmental conditions. Here we demonstrate that density-dependent nymphal colour change in the desert locust Schistocerca gregaria (Orthoptera: Acrididae) results in warning coloration (aposematism) when the population density increases and locusts consume native, toxic host plants. Fringe-toed lizards (Acanthodactylus dumerili (Lacertidae)) developed aversions to high-density-reared (gregarious-phase) locusts fed Hyoscyamus muticus (Solanaceae). Lizards associated both olfactory and visual cues with locust unpalatability, but only gregarious-phase coloration was an effective visual warning signal. The lizards did not associate low rearing density coloration (solitarious phase) with locust toxicity. Predator learning of density-dependent warning coloration results in a marked decrease in predation on locusts and may directly contribute to outbreaks of this notorious pest.  相似文献   

11.
Locusts show an extreme example of density-dependent phase polymorphism, demonstrating within the species differences in morphology as well as biology, dependent on the population density. Behavior is the primary density-dependent change which facilitates the appearance of various morphological and physiological phase characteristics. We have studied density dependent differences in flight related sensory and central neural elements in the desert locust Schistocerca gregaria. Wind generated high frequency spiking activity in the tritocerebral commissure giant (TCG, an identified interneuron that relay inputs from head hair receptors to thoracic motor centers) that was much less intense in solitary locusts, compared to gregarious ones. In addition the solitary locusts' TCG demonstrated much stronger adaptation of its response. In cases when flight was initiated high frequency TCG activity was independent of the locust phase. The tritocerebral commissure dwarf (TCD) is a GABAergic flight related interneuron that is sensitive to ambient illumination intensity. An increase in the TCD spontaneous activity under dark vs. light conditions was significantly higher in gregarious locusts then in solitary ones, implying a flight-related inhibitory mechanism that is far more active in gregarious locusts under dark conditions. Thus, density-dependent phase differences in interneuron activity pattern and properties well reflect and may be at least partially responsible to behavioral flight-related characteristics.  相似文献   

12.
The aim of the present paper was a detailed analysis of changes of circadian activity rhythms immediately before natural death. Investigations were carried out on individually housed female laboratory mice. Locomotor activity was measured by passive infrared detectors starting with an age of about 75 weeks up to death. At the beginning all animals had pronounced circadian activity rhythms with a main maximum during the dark time and a secondary one just after light-on. As compared to adult mice the amount of activity and the circadian range of oscillation were lower. The main maximum was phase advanced in most of the animals, so that the percentage of activity during dark time accounted for less than 50% of the total 24-h activity. Towards death the amount of activity and the amplitude decreased even more. A circadian rhythm was preserved however as long as the animals were active, although its synchronization with LD-Zeitgeber deteriorated markedly. The phase position of the main maximum became more unstable, leading in some cases to complete uncoupling (free-run with t < 24 h). The secondary maximum in contrast was more stable in its phase and remained synchronized longer. The results show that in old age the mechanisms of synchronization break down earlier than the circadian rhythms. Therefore it seems possible to stabilize the circadian rhythms, e.g. by strengthening of Zeitgebers, which in turn may improve wellbeing and performance.  相似文献   

13.
This study investigates the relative strengths of food and light zeitgebers in synchronization of circadian rhythms of Indian weaver birds and the role of the pineal gland in food-induced synchronization of the circadian activity rhythms. Two experiments were performed. In the first experiment, six birds were concurrently exposed for 10 days to PA 12/12 (12 h food present: 12 h food absent) and LD 12/12 (12 h light: 12 h dark). Then, the PA 12/12 cycle was reversed: food was present during the dark period of the LD 12/12 cycle. After 15 days, birds were released into constant dim light (LLdim). During exposure to overlapping light and food availability periods, birds were active only during the daytime. When light and food availability periods were presented in antiphase, two of six birds became night active. However, with the removal of the light zeitgeber (i.e., under LLdim), all birds were synchronized with reversed PA 12/12; hence, they were active during the subjective night (i.e., the period corresponding to darkness [ZT12-0] of the preceding LD 12/12). The second experiment examined whether the pineal contributed to the food-induced synchronization. After two weeks of concurrent PA 12/12 and LD 12/12 exposure, six birds were released into LLdim for 2.5 weeks. Under LLdim, five of six birds were synchronized to PA 12/12 with the circadian period (tau, τ)?=?24 h. The LD 12/12 was restored, and after seven days, birds were pinealectomized (pinx). After 2.5 weeks, pinx birds were again released into LLdim for 2.5 weeks. Under LLdim, pinx birds did not become arrhythmic; instead, they appeared synchronized to PA 12/12 with τ?=?24 h (n?=?4) or ~24 h (n?=?2). We conclude that both food and light act as zeitgebers, although light appears to be the relatively stronger cue when the two are present together, as in the natural environment. We also found that the pineal is not necessary for food-induced synchronization. The findings suggest that food cycles could act as the synchronizer of circadian rhythmicity in biological functions in individuals held in an aperiodic environment.  相似文献   

14.
We tested whether pre-assigned arm movements performed in a group setting spontaneously synchronized and whether synchronization extended to heart and respiratory rhythms. We monitored arm movements, respiration and electrocardiogram at rest and during spontaneous, music and metronome-associated arm-swinging. No directions were given on whether or how the arm swinging were to be synchronized between participants or with the external cues. Synchronization within 3 groups of 10 participants studied collectively was compared with pseudo-synchronization of 3 groups of 10 participants that underwent an identical protocol but in an individual setting. Motor synchronization was found to be higher in the collective groups than in the individuals for the metronome-associated condition. On a repetition of the protocol on the following day, motor synchronization in the collective groups extended to the spontaneous, un-cued condition. Breathing was also more synchronized in the collective groups than in the individuals, particularly at rest and in the music-associated condition. Group synchronization occurs without explicit instructions, and involves both movements and respiratory control rhythms.  相似文献   

15.
Circadian rhythms are adjusted to the external environment by the light-dark cycle via the suprachiasmatic nucleus, and to the internal environment of the body by multiple cues that derive from feeding/fasting. These cues determine the timing of sleep/wake cycles and all the activities associated with these states. We suggest that numerous sources of temporal information, including hormonal cues such as corticoids, insulin, and ghrelin, as well as conditioned learned responses determined by the temporal relationships between photic and feeding/fasting signals, can determine the timing of regularly recurring circadian responses. We further propose that these temporal signals can act additively to modulate the pattern of daily activity. Based on such reasoning, we describe the rationale and methodology for separating the influences of these diverse sources of temporal information. The evidence indicates that there are individual differences in sensitivity to internal and external signals that vary over circadian time, time since the previous meal, time until the next meal, or with duration of food deprivation. All of these cues are integrated in sites and circuits modulating physiology and behavior. Individuals detect changes in internal and external signals, interpret those changes as "hunger," and adjust their physiological responses and activity levels accordingly.  相似文献   

16.
17.
We have investigated the effect of the locust myosuppressin, SchistoFLRFamide, on the activity of amylase and alpha-glucosidase in the midgut of 2-week old male locusts. Total enzyme activity in the lumen contents and tissue extracts of midguts responds to SchistoFLRFamide in a dose-dependent manner that appears to vary with the feeding state of the locust and duration of exposure to the peptide. Starvation for 24h prior to assessment alters the distribution of enzyme activity between the midgut lumen contents and tissue extracts in response to SchistoFLRFamide when compared with fed locusts. Duration of exposure to SchistoFLRFamide also alters the distribution of total amylase and alpha-glucosidase activity; as duration of exposure increases, lower concentrations of SchistoFLRFamide increase total enzyme activity in the lumen contents while decreasing total enzyme activity in the tissue extracts. We suggest that the minimum amino acid sequence in SchistoFLRFamide necessary to increase both amylase and alpha-glucosidase activity is DHVFLRFamide. We have determined that two other peptides endogenous to the locust, AFIRFamide and GQERNFLRFamide, increase amylase and alpha-glucosidase activity in midgut lumen contents.  相似文献   

18.
PHEROMONES AND CHEMICAL ECOLOGY OF LOCUSTS   总被引:1,自引:0,他引:1  
Modern studies of chemical ecology and behaviour of the locusts Schistocerca gregaria and Locusta migratoria in the laboratory need to be more closely coupled with field experiments and observations. The life history relating to oviposition, transformation to gregarious phases, and adult maturation mediated by pheromones is reviewed. The principles of pheromone isolation and identification are discussed. The long-term effects of the gregarization pheromone on the physiology are presented, with discussion of morphological changes, chiasma frequency increases, and synchronization of moulting induced by the pheromone. Isolation of the purported gregarization pheromone, locustol, from faeces is discussed in regard to inconsistent effects. Other more immediate effects of the pheromone on the social (gregarious) behaviour and the isolation of possible pheromone components different from but related to locustol are presented. It is stressed that more rigorous isolation studies should be undertaken to resolve conflicting reports and methodological problems. The possibility of an anti-gregarization pheromone or solitarizing pheromone is discounted. The source and biosynthesis of locustol (or gregarization pheromone) from degradation of lignin by symbiotic bacteria is discussed. Theories of reception of the gregarization pheromone such as inhalation through the spiracles or sensory perception by the antennae are presented. Also an internal mechanism involving cAMP and/or corpora allata may be induced by gregarization pheromone to effect the physiological phase changes. The advantages to an individual of reception of the gregarization pheromone from a group of gregarious and pre-migrating locusts is discussed. Also the possible benefits of gregarious behaviour, phase polymorphism and migration are dealt with. An adult (sexual) maturation pheromone has long-term effects on reducing the period of maturation, and immediate effects on the behavioural vibration response. The epidermal source of the pheromone and glandular cells responsible for the production of the pheromone are discussed. The reception and internal mechanisms of response via the corpora allata are mentioned. The benefits to individuals of synchronized and rapid adult maturation in a gregarious group are considered. An oviposition-stimulating pheromone produced by the male accessory reproductive glands appears to be a proteinaceous substance of large molecular weight. On the other hand, an oviposition-aggregating pheromone volatilizes from epidermal areas of either sex and causes higher oviposition rates in the area of release. The behavioural and ecological aspects of this pheromone are discussed. Several other possible pheromones and semiochemicals are discussed, such as a long-range sex pheromone, sex-recognition pheromone, grass odours and feeding stimulants and deterrents. Several possible control strategies using locust pheromones are considered. The general conclusion is that the chemical isolation of the various pheromones is necessary before further progress can be achieved on the source and biosynthesis of pheromone, reception of pheromone, behavioural effects of pheromone, and control measures.  相似文献   

19.
Desert locusts ( Schistocerca gregaria ) change phase in response to population density: 'solitarious' insects avoid one another, but when crowded they shift to the gregarious phase and aggregate. This individual-level process is the basis for population-level responses that may ultimately include swarm formation. We have recently developed an individual-based model of locust behavior in which contagious resource distribution leads to phase change. This model shows how population gregarization can result from simple processes operating at the individual level. In the present study, we performed a series of laboratory experiments in which vegetation pattern and locust phase state were assigned quantitative, measurable indices. The pattern of distribution of the resource was represented via fractal dimension; the phase state was evaluated using a behavioral assay based on logistic regression analysis. Locusts were exposed to different patterns of food resource in an artificial arena, after which their behavioral phase state was assayed. These experiments showed that when the distribution of the vegetation was patchy, locusts were more active, experienced higher levels of crowding, and became more gregarious. These results are consistent with simulation predictions and field observations, and demonstrate that small-scale vegetation distribution influences individual behavior and phase state and plays a role in population-level responses.  相似文献   

20.
Human presence (e.g. hunting, ecotourism and wildlife photography) affects animal behaviour. Hunting pressure increases the perception of predation risk in ungulates and hares and may force them to create clumped groups within protected areas. Acute effects are showed immediately after harassments and may include displacement of home ranges, alteration of activity rhythms and increased hormone secretions. No study has been carried out yet on behavioural alterations induced by hunting on non-target, legally protected species, whereas these studies should be required to design addressed management and conservation plans. The crested porcupine Hystrix cristata represents a suitable model species to study effects of hunting on protected species, as its ranging movements and activity rhythms are seasonally, stereotypically repeated. My results on individually marked porcupines showed that, when hunting with dogs occurred, a displacement of home range arises towards areas providing easily accessible food resources (i.e. fruits, which do not require digging). This behaviour might prevent porcupines to spend a high amount of time digging bulbs and tubers and, thus, it may result in a reduction of activity bouts. Home range displacement has also been observed only when >10 cm of snow are present on the ground. The presence of hunting dogs increases the predation risk perception by potential prey species, which in turn respond by altering their spatio-temporal behaviour. Wildlife managers should therefore evaluate the use of a small number of specialized dogs for hunting in management and conservation plans, particularly in areas characterized by the presence of endangered and protected species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号