首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Targeting of peroxisomal membrane proteins (PMPs) is a multistep process that requires not only recognition of PMPs in the cytosol but also their insertion into the peroxisomal membrane. As a consequence, targeting signals of PMPs (mPTS) are rather complex. A candidate protein for the PMP recognition event is Pex19p, which interacts with most PMPs. However, the respective Pex19p-binding sites are ill-defined and it is currently disputed whether these sites are contained within mPTS. By using synthetic peptide scans and yeast two-hybrid analyses, we determined and characterized Pex19p-binding sites in Pex11p and Pex13p, two PMPs from Saccharomyces cerevisiae. The sites turned out to be composed of a short helical motif with a minimal length of 11 amino acids. With the acquired data, it proved possible to predict and experimentally verify Pex19p-binding sites in several other PMPs by applying a pattern search and a prediction matrix. A peroxisomally targeted Pex13p fragment became mislocalized to the endoplasmic reticulum in the absence of its Pex19p-binding site. By adding the heterologous binding site of Pex11p, peroxisomal targeting of the Pex13p fragment was restored. We conclude that Pex19p-binding sites are well-defined entities that represent an essential part of the mPTS.  相似文献   

2.
Four ABC half transporters (ALDP, ALDRP, PMP70, and PMP69) have been identified in the mammalian peroxisomal membrane but no function has been unambiguously assigned to any of them. To date X-linked adrenoleukodystrophy (X-ALD) is the only human disease known to result from a defect of one of these ABC transporters, ALDP. Using the yeast two-hybrid system and in vitro GST pull-down assays, we identified the peroxin PEX19p as a novel interactor of ALDP, ALDRP, and PMP70. The cytosolic farnesylated protein PEX19p was previously shown to be involved in an early step of the peroxisomal biogenesis. The PEX19p interaction occurs in an internal N-terminal region of ALDP which we verified to be important for proper peroxisomal targeting of this protein. Farnesylated wild-type PEX19p and a farnesylation-deficient mutant PEX19p did not differ in their ability to bind to ALDP. Our data provide evidence that PEX19p is a cytosolic acceptor protein for the peroxisomal ABC transporters ALDP, PMP70, and ALDRP and might be involved in the intracellular sorting and trafficking of these proteins to the peroxisomal membrane.  相似文献   

3.
Human Pex19p binds a broad spectrum of peroxisomal membrane proteins (PMPs). It has been proposed that this peroxin may: (i) act as a cycling PMP receptor protein, (ii) facilitate the insertion of newly synthesized PMPs into the peroxisomal membrane, or (iii) function as a chaperone to associate and/or dissociate complexes comprising integral PMPs already in the peroxisomal membrane. We previously demonstrated that human Pex19p binds peroxisomal integral membrane proteins at regions distinct from their sorting sequences. Here we demonstrate that a mutant of Pex13p that fails to bind to Pex19p nevertheless targets to and integrates into the peroxisomal membrane. In addition, through in vitro biochemical analysis, we show that Pex19p competes with Pex5p and Pex13p for binding to Pex14p, supporting a role for this peroxin in regulating assembly/disassembly of membrane-associated protein complexes. To further examine the molecular mechanism underlying this competition, six evolutionarily conserved amino acids in the Pex5p/Pex13p/Pex19p binding domain of Pex14p were subjected to site-directed mutagenesis and the corresponding mutants functionally analyzed. Our results indicate that the physically overlapping binding sites of Pex14p for Pex5p, Pex13p, and Pex19p are functionally distinct, suggesting that competition occurs through induction of structural changes, rather than through direct competition. Importantly, we also found that amino acid substitutions resulting in a strongly reduced binding affinity for Pex13p affect the peroxisomal localization of Pex14p.  相似文献   

4.
Peroxisomal proteins are synthesized on free polysomes and then transported from the cytoplasm to peroxisomes. This process is mediated by two short well-defined targeting signals in peroxisomal matrix proteins, but a well-defined targeting signal has not yet been described for peroxisomal membrane proteins (PMPs). One assumption in virtually all prior studies of PMP targeting is that a given protein contains one, and only one, distinct targeting signal. Here, we show that the metabolite transporter PMP34, an integral PMP, contains at least two nonoverlapping sets of targeting information, either of which is sufficient for insertion into the peroxisome membrane. We also show that another integral PMP, the peroxin PEX13, also contains two independent sets of peroxisomal targeting information. These results challenge a major assumption of most PMP targeting studies. In addition, we demonstrate that PEX19, a factor required for peroxisomal membrane biogenesis, interacts with the two minimal targeting regions of PMP34. Together, these results raise the interesting possibility that PMP import may require novel mechanisms to ensure the solubility of integral PMPs before their insertion in the peroxisome membrane, and that PEX19 may play a central role in this process.  相似文献   

5.
Pex19p is a peroxin involved in peroxisomal membrane biogenesis and probably functions as a chaperone and/or soluble receptor specific for cargo peroxisomal membrane proteins (PMPs). To elucidate the functional constituents of Pex19p in terms of the protein structure, we investigated its domain architecture and binding affinity toward various PMPs and peroxins. The human Pex19p cDNA was overexpressed in Escherichia coli, and a highly purified sample of the Pex19p protein was prepared. When PMP22 was synthesized by cell-free translation in the presence of Pex19p, the PMP22 bound to Pex19p was soluble, whereas PMP22 alone was insoluble. This observation shows that Pex19p plays a role in capturing PMP and maintaining its solubility. In a similar manner, Pex19p was bound to PMP70 and Pex16p as well as the Pex3p soluble fragment. Limited proteolysis analyses revealed that Pex19p consists of the C-terminal core domain flanking the flexible N-terminal region. Separation of Pex19p into its N- and C-terminal halves abolished interactions with PMP22, PMP70, and Pex16p. In contrast, the flexible N-terminal half of Pex19p was bound to the Pex3p soluble fragment, suggesting that the binding mode of Pex3p toward Pex19p differs from that of other PMPs. This idea is supported by our detection of the Pex19p-Pex3p-PMP22 ternary complex.  相似文献   

6.
Pichia pastoris PEX17 was cloned by complementation of a peroxisome-deficient strain obtained from a novel screen for mutants disrupted in the localization of a peroxisomal membrane protein (PMP) reporter. PEX17 encodes a 267-amino-acid protein with low identity (18%) to the previously characterized Saccharomyces cerevisiae Pex17p. Like ScPex17p, PpPex17p contains a putative transmembrane domain near the amino terminus and two carboxyl-terminal coiled-coil regions. PpPex17p behaves as an integral PMP with a cytosolic carboxyl-terminal domain. pex17Delta mutants accumulate peroxisomal matrix proteins and certain integral PMPs in the cytosol, suggesting a critical role for Pex17p in their localization. Peroxisome remnants were observed in the pex17Delta mutant by morphological and biochemical means, suggesting that Pex17p is not absolutely required for remnant formation. Yeast two-hybrid analysis demonstrated that the carboxyl terminus of Pex19p was required for interaction with Pex17p lacking the carboxyl-terminal coiled-coil domains. Biochemical evidence confirmed the interaction between Pex19p and Pex17p. Additionally, Pex17p cross-linked to components of the peroxisome targeting signal-receptor docking complex, which unexpectedly contained Pex3p. Our evidence suggests the existence of distinct subcomplexes that contain separable pools of Pex3p, Pex19p, Pex17p, Pex14p, and the peroxisome targeting signal receptors. These distinct pools may serve different purposes for the import of matrix proteins or PMPs.  相似文献   

7.
Integral peroxisomal membrane proteins (PMPs) are synthesized in the cytoplasm and imported posttranslationally. Here, we demonstrate that PEX19 binds and stabilizes newly synthesized PMPs in the cytosol, binds to multiple PMP targeting signals (mPTSs), interacts with the hydrophobic domains of PMP targeting signals, and is essential for PMP targeting and import. These results show that PEX19 functions as both a chaperone and an import receptor for newly synthesized PMPs. We also demonstrate the existence of two PMP import mechanisms and two classes of mPTSs: class 1 mPTSs, which are bound by PEX19 and imported in a PEX19-dependent manner, and class 2 mPTSs, which are not bound by PEX19 and mediate protein import independently of PEX19.  相似文献   

8.
Pex19p is required for the topogenesis of peroxisomal membrane proteins (PMPs). Here we have demonstrated that Pex19p is also required for the peroxisomal targeting and stability of Pex17p, a peripheral component of the docking complex of the peroxisomal protein import machinery. We have demonstrated that Pex17p is associated with the peroxisomal Pex13p-Pex14p complex as well as with Pex19p. We have identified the corresponding binding sites for Pex14p and Pex19p and demonstrated that a specific loss of the Pex19p interaction resulted in mistargeting of Pex17p. We have shown that a construct consisting only of the Pex19p- and Pex14p-binding sites of Pex17p is sufficient to direct an otherwise cytosolic reporter protein to the peroxisomal membrane in a Pex19p-dependent manner. Our data show that the function of Pex19p as chaperone or import receptor is not restricted to integral membrane proteins but may also include peripheral PMPs. As a consequence of our data, the previous definition of a targeting signal for PMPs (mPTS) as a Pex19p-binding motif in conjunction with a transmembrane segment should be extended to regions comprising a Pex19p-binding motif and a peroxisomal anchor sequence.  相似文献   

9.
The assembly of proteins in the peroxisomal membrane is a multistep process requiring their recognition in the cytosol, targeting to and insertion into the peroxisomal membrane, and stabilization within the lipid bilayer. The peroxin Pex19p has been proposed to be either the receptor that recognizes and targets newly synthesized peroxisomal membrane proteins (PMP) to the peroxisome or a chaperone required for stabilization of PMPs at the peroxisomal membrane. Differentiating between these two roles for Pex19p could be achieved by determining whether the peroxisomal targeting signal (PTS) and the region of Pex19p binding of a PMP are the same or different. We addressed the role for Pex19p in the assembly of two PMPs, Pex30p and Pex32p, of the yeast Saccharomyces cerevisiae. Pex30p and Pex32p control peroxisome size and number but are dispensable for peroxisome formation. Systematic truncations from the carboxyl terminus, together with in-frame deletions of specific regions, have identified PTSs essential for targeting Pex30p and Pex32p to peroxisomes. Both Pex30p and Pex32p interact with Pex19p in regions that do not overlap with their PTSs. However, Pex19p is required for localizing Pex30p and Pex32p to peroxisomes, because mutations that disrupt the interaction of Pex19p with Pex30p and Pex32p lead to their mislocalization to a compartment other than peroxisomes. Mutants of Pex30p and Pex32p that localize to peroxisomes but produce cells exhibiting the peroxisomal phenotypes of cells lacking these proteins demonstrate that the regions in these proteins that control peroxisomal targeting and cell biological activity are separable. Together, our data show that the interaction of Pex19p with Pex30p and Pex32p is required for their roles in peroxisome biogenesis and are consistent with a chaperone role for Pex19p in stabilizing or maintaining membrane proteins in peroxisomes.  相似文献   

10.
Peroxisomes are components of virtually all eukaryotic cells. While much is known about peroxisomal matrix protein import, our understanding of how peroxisomal membrane proteins (PMPs) are targeted and inserted into the peroxisome membrane is extremely limited. Here, we show that PEX19 binds a broad spectrum of PMPs, displays saturable PMP binding, and interacts with regions of PMPs required for their targeting to peroxisomes. Furthermore, mislocalization of PEX19 to the nucleus leads to nuclear accumulation of newly synthesized PMPs. At steady state, PEX19 is bimodally distributed between the cytoplasm and peroxisome, with most of the protein in the cytoplasm. We propose that PEX19 may bind newly synthesized PMPs and facilitate their insertion into the peroxisome membrane. This hypothesis is supported by the observation that the loss of PEX19 results in degradation of PMPs and/or mislocalization of PMPs to the mitochondrion.  相似文献   

11.
The protein Pex19p functions as a receptor and chaperone of peroxisomal membrane proteins (PMPs). The crystal structure of the folded C‐terminal part of the receptor reveals a globular domain that displays a bundle of three long helices in an antiparallel arrangement. Complementary functional experiments, using a range of truncated Pex19p constructs, show that the structured α‐helical domain binds PMP‐targeting signal (mPTS) sequences with about 10 μM affinity. Removal of a conserved N‐terminal helical segment from the mPTS recognition domain impairs the ability for mPTS binding, indicating that it forms part of the mPTS‐binding site. Pex19p variants with mutations in the same sequence segment abolish correct cargo import. Our data indicate a divided N‐terminal and C‐terminal structural arrangement in Pex19p, which is reminiscent of a similar division in the Pex5p receptor, to allow separation of cargo‐targeting signal recognition and additional functions.  相似文献   

12.
In contrast to the molecular mechanisms underlying import of peroxisomal matrix proteins, those involving the transport of membrane proteins remain rather elusive. At present, two targeting routes for peroxisomal membrane proteins (PMPs) have been depicted: class I PMPs are targeted from the cytoplasm directly to the peroxisome membrane, and class II PMPs are sorted indirectly to peroxisomes via the endoplasmic reticulum (ER). In addition, three peroxins--Pex3p, Pex16p, and Pex19p - have been identified as essential factors for PMP assembly in several species including humans: Pex19p is a predominantly cytoplasmic protein that shows a broad PMP-binding specificity; Pex3p serves as the membrane-anchoring site for Pex19p; and Pex16p - a protein absent in most yeasts--is thought to provide the initial scaffold for recruiting the protein import machinery required for peroxisome membrane biogenesis. Remarkably, the function of Pex16p does not appear to be conserved between different species. In addition, significant disagreement exists about whether Pex19p has a chaperone-like role in the cytosol or at the peroxisome membrane and/or functions as a cycling import receptor for newly synthesized PMPs. Here we review the recent progress made in our understanding of the role of two key players in PMP biogenesis, Pex3p and Pex19p.  相似文献   

13.
The molecular machinery underlying peroxisomal membrane biogenesis is not well understood. The observation that cells deficient in the peroxins Pex3p, Pex16p, and Pex19p lack peroxisomal membrane structures suggests that these molecules are involved in the initial stages of peroxisomal membrane formation. Pex19p, a predominantly cytosolic protein that can be farnesylated, binds multiple peroxisomal integral membrane proteins, and it has been suggested that it functions as a soluble receptor for the targeting of peroxisomal membrane proteins (PMPs) to the peroxisome. An alternative view proposes that Pex19p functions as a chaperone at the peroxisomal membrane. Here, we show that the peroxisomal sorting determinants and the Pex19p-binding domains of a number of PMPs are distinct entities. In addition, we extend the list of peroxins with which human Pex19p interacts to include the PMP Pex16p and show that Pex19p's CaaX prenylation motif is an important determinant in the affinity of Pex19p for Pex10p, Pex11pbeta, Pex12p, and Pex13p.  相似文献   

14.
Pex19p, a primarily cytosolic protein, is essential for the biogenesis of numerous peroxisomal membrane proteins (PMPs); however, its precise function is unclear. Pex19p might function as a PMP-specific chaperone, a cycling PMP-receptor protein, a PMP membrane insertion factor, or an association/dissociation factor of membrane-associated protein complexes. Alternatively, Pex19p might act as a multifunctional peroxin and participate in a number of these activities. Here, we have employed transposon mutagenesis to generate a library of human pex19 alleles coding for Pex19p variants containing random in-frame pentapeptide insertions. A total of 87 different variants were characterized to identify functionally important regions. These studies revealed that Pex19p has a tripartite domain structure consisting of: (i) an amino-terminal domain that binds to Pex3p and is essential for docking at the peroxisome membrane; (ii) a central domain that competes with Pex5p and Pex13p for binding to Pex14p and may play a role in the assembly of PTS-receptor docking complexes; and (iii) a carboxy-terminal domain that interacts with multiple PMPs including Pex3p, Pex11pbeta, Pex12p, Pex13p, Pex16p, and Pex26p. Whether the latter interactions constitute the chaperone or transport functions (or both), remains to be determined. Finally, our observation that Pex19p contains two distinct binding sites for Pex3p suggests that the peroxin may bind PMPs in multiple places and for multiple purposes.  相似文献   

15.
Pex19p is a protein required for the peroxisomal membrane synthesis. The 70-kDa peroxisomal membrane protein (PMP70) is synthesized on free cytosolic ribosomes and then inserted posttranslationally into peroxisomal membranes. Pex19p has been shown to play an important role in this process. Using an in vitro translation system, we investigated the role of Pex19p as a chaperone and identified the regions of PMP70 required for the interaction with Pex19p. When PMP70 was translated in the presence of purified Pex19p, a large part of PMP70 existed as soluble form and was co-immunoprecipitated with Pex19p. However, in the absence of Pex19p, PMP70 formed aggregates during translation. To identify the regions that interact with Pex19p, various truncated PMP70 were translated in the presence of Pex19p and subjected to co-immunoprecipitation. The interaction was markedly reduced by the deletion of the NH(2)-terminal 61 amino acids or the region around TMD6. Further, we expressed these deletion constructs of PMP70 in fusion with the green fluorescent protein in CHO cells. Fusion proteins lacking these Pex19p binding sites did not display any peroxisomal localization. These results suggest that Pex19p binds to PMP70 co-translationally and keeps PMP70 as a proper conformation for the localization to peroxisome.  相似文献   

16.
Peroxisomes require peroxin (Pex) proteins for their biogenesis. The interaction between Pex3p, which resides on the peroxisomal membrane, and Pex19p, which resides in the cytosol, is crucial for peroxisome formation and the post-translational targeting of peroxisomal membrane proteins (PMPs). It is not known how Pex3p promotes the specific interaction with Pex19p for the purpose of PMP translocation. Here, we present the three-dimensional structure of the complex between a cytosolic domain of Pex3p and the binding-region peptide of Pex19p. The overall shape of Pex3p is a prolate spheroid with a novel fold, the 'twisted six-helix bundle.' The Pex19p-binding site is at an apex of the Pex3p spheroid. A 16-residue region of the Pex19p peptide forms an α-helix and makes a contact with Pex3p; this helix is disordered in the unbound state. The Pex19p peptide contains a characteristic motif, consisting of the leucine triad (Leu18, Leu21, Leu22), and Phe29, which are critical for the Pex3p binding and peroxisome biogenesis.  相似文献   

17.
Import of matrix proteins into peroxisomes requires two targeting signal-specific import receptors, Pex5p and Pex7p, and their binding partners at the peroxisomal membrane, Pex13p and Pex14p. Several constructs of human PEX5 have been overexpressed and purified by affinity chromatography in order to determine functionally important interactions and provide initial structural information. Sizing chromatography and electron microscopy suggest that the two isoforms of the human PTS1 receptor, PEX5L and PEX5S, form homotetramers. Surface plasmon resonance analysis indicates that PEX5 binds to the N-terminal fragment of PEX14-(1-78) with a very high affinity in the low nanomolar range. Stable complexes between recombinant PEX14-(1-78) and both the full-length and truncated versions of PEX5 were formed in vitro. Analysis of these complexes revealed that PEX5 possesses multiple binding sites for PEX14, which appear to be distributed throughout its N-terminal half. Coincidentally, this part of the molecule is also responsible for oligomerization, whereas the C-terminal half with its seven tetratricopeptide repeats has been reported to bind PTS1-proteins. A pentapeptide motif that is reiterated seven times in PEX5 is proposed as a determinant for the interaction with PEX14.  相似文献   

18.
PEX19 is a chaperone and import receptor for newly synthesized, class I peroxisomal membrane proteins (PMPs). PEX19 binds these PMPs in the cytoplasm and delivers them to the peroxisome for subsequent insertion into the peroxisome membrane, indicating that there may be a PEX19 docking factor in the peroxisome membrane. Here we show that PEX3 is required for PEX19 to dock at peroxisomes, interacts specifically with the docking domain of PEX19, and is required for recruitment of the PEX19 docking domain to peroxisomes. PEX3 is also sufficient to dock PEX19 at heterologous organelles and binds PEX19 via a conserved motif that is essential for this docking activity and for PEX3 function in general. Not surprisingly, transient inhibition of PEX3 abrogates class I PMP import but has no effect on class II PMP import or peroxisomal matrix protein import. Taken together, these results suggest that PEX3 plays a selective, essential, and direct role in PMP import as a docking factor for PEX19.  相似文献   

19.
PEX19 has been shown to play a central role in the early steps of peroxisomal membrane synthesis. Computational database analysis of the PEX19 sequence revealed three different conserved domains: D1 (aa 1--87), D2 (aa 88--272), and D3 (aa 273--299). However, these domains have not yet been linked to specific biological functions. We elected to functionally characterize the proteins derived from two naturally occurring PEX19 splice variants: PEX19DeltaE2 lacking the N-terminal domain D1 and PEX19DeltaE8 lacking the domain D3. Both interact with peroxisomal ABC transporters (ALDP, ALDRP, PMP70) and with full-length PEX3 as shown by in vitro protein interaction studies. PEX19DeltaE8 also interacts with a PEX3 protein lacking the peroxisomal targeting region located at the N-terminus (Delta66aaPEX3), whereas PEX19DeltaE2 does not. Functional complementation studies in PEX19-deficient human fibroblasts revealed that transfection of PEX19DeltaE8-cDNA leads to restoration of both peroxisomal membranes and of functional peroxisomes, whereas transfection of PEX19DeltaE2-cDNA does not restore peroxisomal biogenesis. Human PEX19 is partly farnesylated in vitro and in vivo. The farnesylation consensus motif CLIM is located in the PEX19 domain D3. The finding that the protein derived from the splice variant lacking D3 is able to interact with several peroxisomal membrane proteins and to restore peroxisomal biogenesis challenges the previous assumption that farnesylation of PEX19 is essential for its biological functionality. The data presented demonstrate a considerable functional diversity of the proteins encoded by two PEX19 splice variants and thereby provide first experimental evidence for specific biological functions of the different predicted domains of the PEX19 protein.  相似文献   

20.
Peroxisomes are single-membrane bound organelles that are essential for normal development in plants and animals. In mammals and yeast, the peroxin (PEX) proteins PEX3 and PEX19 facilitate the early steps of peroxisome membrane protein (PMP) insertion and pre-peroxisome budding from the endoplasmic reticulum. The PEX3 membrane protein acts as a docking site for PEX19, a cytosolic chaperone for PMPs that delivers PMPs to the endoplasmic reticulum or peroxisomal membrane. PEX19 is farnesylated in yeast and mammals, and we used immunoblotting with prenylation mutants to show that PEX19 also is fully farnesylated in wild-type Arabidopsis thaliana plants. We examined insertional alleles disrupting either of the two Arabidopsis PEX19 isoforms, PEX19A or PEX19B, and detected similar levels of PEX19 protein in the pex19a-1 mutant and wild type; however, PEX19 protein was nearly undetectable in the pex19b-1 mutant. Despite the reduction in PEX19 levels in pex19b-1, both pex19a-1 and pex19b-1 single mutants lacked notable peroxisomal β-oxidation defects and displayed normal levels and localization of peroxisomal matrix and membrane proteins. The pex19a-1 pex19b-1 double mutant was embryo lethal, indicating a redundantly encoded critical role for PEX19 during embryogenesis. Expressing YFP-tagged versions of either PEX19 isoform rescued this lethality, confirming that PEX19A and PEX19B act redundantly in Arabidopsis. We observed that pex19b-1 enhanced peroxisome-related defects of a subset of peroxin-defective mutants, supporting a role for PEX19 in peroxisome function. Together, our data indicate that Arabidopsis PEX19 promotes peroxisome function and is essential for viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号