首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yang KY  Swenson RP 《Biochemistry》2007,46(9):2298-2305
Nonresonance Raman spectroscopy has been used to investigate the protein-flavin interactions of the oxidized and anionic semiquinone states of the electron-transfer flavoprotein from the methylotrophic bacteria W3A1 (wETF) in solution. Several unique features of oxidized wETF were revealed from the Raman data. The unusually high frequency of the Raman band for the C(4)=O of the flavin suggests that hydrogen-bonding interactions with the C(4)O are very weak or nonexistent in wETF. In contrast, hydrogen bonding with the C(2)=O is one of the strongest among the flavoproteins investigated thus far. According to the crystal structure, the side-chain hydroxyl group of alphaSer254 serves as a hydrogen bond donor to the N(5) atom in the oxidized flavin cofactor in wETF. The replacement of alphaSer254 by cysteine by site-directed mutagenesis resulted in shifts in N(5)-relevant Raman bands in both the oxidized and anionic semiquinone states of the protein. These results confirm the presence of the hydrogen-bonding interaction at N(5) that is evident in the crystal structure of the oxidized protein and that it persists in the one-electron reduced state. The data suggest that these bands can serve as useful Raman markers for the N(5) interactions in both oxidation states of flavoproteins. The wETF displays unusually low frequencies of flavin ring I (o-xylene ring) relevant bands, which suggests a ring I microenvironment different from most of the other flavoproteins. As indicated by Raman data, the alphaS254C mutation changed the environment of ring I, perhaps as the consequence of changes in the mobility of the FAD domain of wETF. These unusual flavin-protein interactions may be associated with the unique redox properties of wETF.  相似文献   

2.
The long-chain flavodoxins, with 169-176 residues, display oxidation-reduction potentials at pH 7 that vary from -50 to -260 mV for the oxidized/semiquinone (ox/sq) equilibrium and are -400 mV or lower for the semiquinone/hydroquinone (sq/hq) equilibrium. To examine the effects of protein interactions and conformation changes on FMN potentials in the long-chain flavodoxin from Anacystis nidulans (Synechococcus PCC 7942), we have determined crystal structures for the semiquinone and hydroquinone forms of the wild-type protein and for the mutant Asn58Gly, and have measured redox potentials and FMN association constants. A peptide near the flavin ring, Asn58-Val59, reorients when the FMN is reduced to the semiquinone form and adopts a conformation ("O-up") in which O 58 hydrogen bonds to the flavin N(5)H; this rearrangement is analogous to changes observed in the flavodoxins from Clostridium beijerinckii and Desulfovibrio vulgaris. On further reduction to the hydroquinone state, the Asn58-Val59 peptide in crystalline wild-type A. nidulans flavodoxin rotates away from the flavin to the "O-down" position characteristic of the oxidized structure. This reversion to the conformation found in the oxidized state is unusual and has not been observed in other flavodoxins. The Asn58Gly mutation, at the site which undergoes conformation changes when FMN is reduced, was expected to stabilize the O-up conformation found in the semiquinone oxidation state. This mutation raises the ox/sq potential by 46 mV to -175 mV and lowers the sq/hq potential by 26 mV to -468 mV. In the hydroquinone form of the Asn58Gly mutant the C-O 58 remains up and hydrogen bonded to N(5)H, as in the fully reduced flavodoxins from C. beijerinckii and D. vulgaris. The redox and structural properties of A. nidulans flavodoxin and the Asn58Gly mutant confirm the importance of interactions made by N(5) or N(5)H in determining potentials, and are consistent with earlier conclusions that conformational energies contribute to the observed potentials.The mutations Asp90Asn and Asp100Asn were designed to probe the effects of electrostatic interactions on the potentials of protein-bound flavin. Replacement of acidic by neutral residues at positions 90 and 100 does not perturb the structure, but has a substantial effect on the sq/hq equilibrium. This potential is increased by 25-41 mV, showing that electrostatic interaction between acidic residues and the flavin decreases the potential for conversion of the neutral semiquinone to the anionic hydroquinone. The potentials and the effects of mutations in A. nidulans flavodoxin are rationalized using a thermodynamic scheme developed for C. beijerinckii flavodoxin.  相似文献   

3.
F C Chang  R P Swenson 《Biochemistry》1999,38(22):7168-7176
In the Clostridium beijerinckii flavodoxin, the reduction of the flavin mononucleotide (FMN) cofactor is accompanied by a local conformation change in which the Gly57-Asp58 peptide bond "flips" from primarily the unusual cis O-down conformation in the oxidized state to the trans O-up conformation such that a new hydrogen bond can be formed between the carbonyl group of Gly57 and the proton on N(5) of the neutral FMN semiquinone radical [Ludwig, M. L., Pattridge, K. A., Metzger, A. L., Dixon, M. M., Eren, M., Feng, Y., and Swenson, R. P. (1997) Biochemistry 36, 1259-1280]. This interaction is thought to contribute to the relative stabilization of the flavin semiquinone and may be at least partially responsible for the substantial separation of the midpoint potentials of the two one-electron reduction steps. Through a series of amino acid substitutions, the above cited study demonstrated the critical role of the often conserved glycine residue in this process. However, it has not been directly established experimentally as to whether these substitutions brought about the changes in the midpoint potentials by altering the strength of this hydrogen-bonding interaction as proposed. In this study, the relative strengths of the FMN N(5)H.O57 hydrogen bond in wild type and the G57A, G57N, and G57T mutants were evaluated by measuring the temperature dependency of the chemical shift for the proton on N(5) of the fully reduced cofactor by 1H-15N HSQC nuclear magnetic resonance spectroscopy. Based on the established correlation between the temperature coefficient of amide protons and the strength of hydrogen bonding in small peptides, the apparent strength of the N(5)H.O57 interaction was found to depend on the properties of the side chain at position 57. The glycine residue found in the wild-type flavodoxin appears to provide the strongest interaction while the beta-branched side chain in the G57T mutant provides the weakest. A good correlation was noted between the temperature coefficients of N(5)H and the one-electron reduction potential for the ox/sq couple as well as the binding free energy of the FMN semiquinone in this group of mutants. These results provide more direct quantitative evidence that support the previous hypothesis that this conformation change and the associated formation of the hydrogen bonding interaction with N(5)H of the reduced FMN represent an important means of stabilizing the neutral semiquinone and in modulating the oxidation-reduction potentials of the flavin cofactor in this and perhaps other flavodoxins.  相似文献   

4.
Electron-transfer flavoprotein (ETF) serves as an intermediate electron carrier between primary flavoprotein dehydrogenases and terminal respiratory chains in mitochondria and prokaryotic cells. The three-dimensional structures of human and Paracoccus denitrificans ETFs determined by X-ray crystallography indicate that the 4'-hydroxyl of the ribityl side chain of FAD is hydrogen bonded to N(1) of the flavin ring. We have substituted 4'-deoxy-FAD for the native FAD and investigated the analog-containing ETF to determine the role of this rare intra-cofactor hydrogen bond. The binding constants for 4'-deoxy-FAD and FAD with the apoprotein are very similar, and the energy of binding differs by only 2 kJ/mol. The overall two-electron oxidation-reduction potential of 4'-deoxy-FAD in solution is identical to that of FAD. However, the potential of the oxidized/semiquinone couple of the ETF containing 4'-deoxy-FAD is 0.116 V less than the oxidized/semiquinone couple of the native protein. These data suggest that the 4'-hydoxyl-N(1) hydrogen bond stabilizes the anionic semiquinone in which negative charge is delocalized over the N(1)-C(2)O region. Transfer of the second electron to 4'-deoxy-FAD reconstituted ETF is extremely slow, and it was very difficult to achieve complete reduction of the flavin semiquinone to the hydroquinone. The turnover of medium chain acyl-CoA dehydrogenase with native ETF and ETF containing the 4'-deoxy analogue was essentially identical when the reduced ETF was recycled by reduction of 2,6-dichlorophenolindophenol. However, the steady-state turnover of the dehydrogenase with 4'-deoxy-FAD was only 23% of the turnover with native ETF when ETF semiquinone formation was assayed directly under anaerobic conditions. This is consistent with the decreased potential of the oxidized semiquinone couple of the analog-containing ETF. ETF containing 4'-deoxy-FAD neither donates to nor accepts electrons from electron-transfer flavoprotein ubiquinone oxidoreductase (ETF-QO) at significant rates (相似文献   

5.
Flavodoxins (Flds) are small proteins that shuttle electrons in a range of reactions in microorganisms. Flds contain a redox‐active cofactor, a flavin mononucleotide (FMN), and it is well established that when Flds are reduced by one electron, a peptide bond close to the FMN isoalloxazine ring flips to form a new hydrogen bond with the FMN N5H, stabilizing the one‐electron reduced state. Here, we present high‐resolution crystal structures of Flavodoxin 1 from Bacillus cereus in both the oxidized (ox) and one‐electron reduced (semiquinone, sq) state. We observe a mixture of conformers in the oxidized state; a 50:50 distribution between the established oxidized conformation where the peptide bond is pointing away from the flavin, and a conformation where the peptide bond is pointing toward the flavin, approximating the conformation in the semiquinone state. We use single‐crystal spectroscopy to demonstrate that the mixture of conformers is not caused by radiation damage to the crystal. This is the first time that such a mixture of conformers is reported in a wild‐type Fld. We therefore carried out a survey of published Fld structures, which show that several proteins have a pronounced conformational flexibility of this peptide bond. The degree of flexibility seems to be modulated by the presence, or absence, of stabilizing interactions between the peptide bond carbonyl and its surrounding amino acids. We hypothesize that the degree of conformational flexibility will affect the Fld ox/sq redox potential.  相似文献   

6.
L H Bradley  R P Swenson 《Biochemistry》1999,38(38):12377-12386
The midpoint potentials for both redox couples of the noncovalently bound flavin mononucleotide (FMN) cofactor in the flavodoxin are known to be pH dependent. While the pH dependency for the oxidized-semiquinone (ox/sq) couple is consistent with the formation of the blue neutral form of the flavin semiquinone, that of the semiquinone-hydroquinone (sq/hq) couple is more enigmatic. The apparent pK(a) of 6.7 for this couple in the flavodoxin from Clostridium beijerinckii has been attributed to the ionization of the FMN(HQ); however, nuclear magnetic resonance data strongly suggest the FMN(HQ) remains anionic over the entire pH range testable. As an alternative explanation, a specific glutamate residue (Glu59 in this flavodoxin), which is hydrogen-bonded to N(3)H of the FMN, has been postulated to be the primary redox-linked proton acceptor responsible for the pH effect in some flavodoxins. This model was directly tested in this study by permanently neutralizing Glu59 by its replacement with glutamine. This conservative substitution resulted in an increase of 86 mV (at pH 7) in midpoint potential of the sq/hq couple; however, the pH dependency of this couple was not altered. Thus, the redox-linked protonation of Glu59 clearly cannot be responsible for this effect as proposed. The pH dependency of the ox/sq couple was also similar to wild type, but the midpoint potential has decreased by 65 mV (pH 7). The K(d) values for the oxidized, semiquinone, and hydroquinone complexes increased by 43-, 590-, and 20-fold, respectively, relative to the wild type. Thus, the Glu59 to glutamine substitution substantially effects the stability of the semiquinone but, on a relative basis, slightly favors the formation of the hydroquinone. On the basis of (1)H-(15)N HSQC nuclear magnetic resonance spectroscopic studies, the increased temperature coefficients for the protons on N(3) and N(5) of the reduced FMN in E59Q suggest that the hydrogen-bonding interactions at these positions are significantly weakened in this mutant. The increase for N(5)H correlates with the reduced stability of the FMN(SQ) and the more negative midpoint potential for the ox/sq couple. On the basis of the X-ray structure, an "anchoring" role is proposed for the side chain carboxylate of Glu59 that stabilizes the structure of the 50's loop in such a way so as to promote the crucial hydrogen-bonding interaction that stabilizes the flavin semiquinone, contributing to the low potential of this flavodoxin.  相似文献   

7.
The apoenzyme of NADPH oxidoreductase, 'old yellow enzyme', was reconstituted with specifically 15N-labeled flavin mononucleotide and investigated by 15N NMR spectroscopy in the oxidized and reduced state. The results indicate that in the oxidized state a hydrogen bond is formed between the N(5) atom and the apoprotein. In addition, hydrogen bonds exist between the N(1) and N(3) atoms of FMN and the apoprotein. The resonance position of N(10) indicates that this atom is somewhat sp3-hybridized, i.e. lifted out of the molecular plane of the isoalloxazine ring system. In the reduced state the N(1) atom is negatively charged and the N(3) atom forms a hydrogen bond with the apoprotein. The N(10) atom in protein-bound FMN exhibits about the same hybridization state as in free anionic reduced FMN, i.e. it is located in the plane of the isoalloxazine ring. The chemical shift of the N(5) resonance indicates that this atom is almost completely sp3-hybridized. This interpretation can also be derived from the 15N(5)-1H coupling constant. Among the flavoproteins thus far studied by NMR techniques, old yellow enzyme is the only protein that shows a conformation of the reduced prosthetic group with the N(5) atom lifted out of the molecular plane. The isoelectric focussing properties of old yellow enzyme and a new easy method for the preparation of the apoprotein are also reported.  相似文献   

8.
The FAD of p-hydroxybenzoate hydroxylase (PHBH) is known to exist in two conformations. The FAD must be in the in-position for hydroxylation of p-hydroxybenzoate (pOHB), whereas the out-position is essential for reduction of the flavin by NADPH. In these investigations, we have used 8-mercapto-FAD and 8-hydroxy-FAD to probe the movement of the flavin in catalysis. Under the conditions employed, 8-mercapto-FAD (pK(a) = 3.8) and 8-hydroxy-FAD (pK(a) = 4.8) are mainly anionic. The spectral characteristics of the anionic forms of these flavins are very sensitive to their environment, making them sensitive probes for detecting movement of the flavin during catalysis. With these flavin analogues, the enzyme hydroxylates pOHB efficiently, but at a rate much slower than that of enzyme with FAD. Reaction of oxygen with reduced forms of these modified enzymes in the absence of substrate appears to proceed through the formation of the flavin-C4a-hydroperoxide intermediate, as with normal enzyme, but the decay of this intermediate is so fast compared to its formation that very little accumulates during the reaction. However, after elimination of H2O2 from the flavin-C4a-hydroperoxide, a perturbed oxidized enzyme spectrum is observed (Eox*), and this converts slowly to the spectrum of the resting oxidized form of the enzyme (Eox). In the presence of pOHB, PHBH reconstituted with 8-mercapto-FAD also shows the additional oxidized intermediate (Eox*) after the usual oxygenated C4a-intermediates have formed and decayed in the course of the hydroxylation reaction. This Eox* to Eox step is postulated to be due to flavin movement. Furthermore, binding of pOHB to resting (Eox) follows a three-step equilibrium mechanism that is also consistent with flavin movement being the rate-limiting step. The rate for the slowest step during pOHB binding is similar to that observed for the conversion of Eox* to Eox during the oxygen reaction in the absence or presence of substrate. Steady-state kinetic analysis of PHBH substituted with 8-mercapto-FAD demonstrated that the apparent k(cat) is also similar to the rate of Eox* conversion to Eox. Presumably, the protein environment surrounding the flavin in Eox* differs slightly from that of the final resting form of the enzyme (Eox).  相似文献   

9.
Human methionine synthase reductase (MSR) catalyzes the NADPH-dependent reductive methylation of methionine synthase. MSR is 78 kDa flavoprotein belonging to a family of diflavin reductases, with cytochrome P450 reductase (CPR) as the prototype. MSR and its individual flavin-binding domains were cloned as GST-tagged fusion proteins for expression and purification from Escherichia coli. The isolated flavin domains of MSR retain UV-visible and secondary structural properties indicative of correctly folded flavoproteins. Anaerobic redox titrations on the individual domains assisted in assignment of the midpoint potentials for the high- and low-potential flavin. For the isolated FMN domain, the midpoint potentials for the oxidized/semiquinone (ox/sq) couple and semiquinone/hydroquinone (sq/hq) couple are -112 and -221 mV, respectively, at pH 7.0 and 25 degrees C. The corresponding couples in the isolated FAD domain are -222 mV (ox/sq) and -288 mV (sq/hq). Both flavins form blue neutral semiquinone species characterized by broad absorption peaks in the long-wavelength region during anaerobic titration with sodium dithionite. In full-length MSR, the values of the FMN couples are -109 mV (ox/sq) and -227 mV (sq/hq), and the corresponding couple values for FAD are -254 mV (ox/sq) and -291 mV (sq/hq). Separation of the MSR flavins does not perturb their thermodynamic properties, as midpoint potentials for all four couples are similar in isolated domains and in full-length MSR. The redox properties of MSR are discussed in relation to other members of the diflavin oxidoreductase family and the mechanism of electron transfer.  相似文献   

10.
p-Hydroxybenzoate hydroxylase from Pseudomonas fluorescens and salicylate hydroxylase from Pseudomonas putida have been reconstituted with 13C- and 15N-enriched FAD. The protein preparations were studied by 13C-NMR, 15N-NMR and 31P-NMR techniques in the oxidized and in the two-electron-reduced states. The chemical shift values are compared with those of free flavin in water or chloroform. It is shown that the pi electron distribution in oxidized free p-hydroxybenzoate hydroxylase is comparable to free flavin in water, and it is therefore suggested that the flavin ring is solvent accessible. Addition of substrate has a strong effect on several resonances, e.g. C2 and N5, which indicates that the flavin ring becomes shielded from solvent and also that a conformational change occurs involving the positive pole of an alpha-helix microdipole. In the reduced state, the flavin in p-hydroxybenzoate hydroxylase is bound in the anionic form, i.e. carrying a negative charge at N1. The flavin is bound in a more planar configuration than when free in solution. Upon binding of substrate the resonances of N1, C10a and N10 shift upfield. It is suggested that these upfield shifts are the result of a conformational change similar, but not identical, to the one observed in the oxidized state. The 13C chemical shifts of FAD bound to apo(salicylate hydroxylase) indicate that in the oxidized state the flavin ring is also fairly solvent accessible in the free enzyme. Addition of substrate has a strong effect on the hydrogen bond formed with O4 alpha. It is suggested that this is due to the exclusion of water from the active site by the binding of substrate. In the reduced state, the flavin is anionic. Addition of substrate forces the flavin ring to adopt a more planar configuration, i.e. a sp2-hybridized N5 atom and a slightly sp3-hybridized N10 atom. The NMR results are discussed in relation to the reaction catalyzed by the enzymes.  相似文献   

11.
Flavodoxin II from Azotobacter vinelandii is a "long-chain" flavodoxin and has one of the lowest E1 midpoint potentials found within the flavodoxin family. To better understand the relationship between structural features and redox potentials, the oxidized form of the C69A mutant of this flavodoxin was crystallized and its three-dimensional structure determined to a resolution of 2.25 A by molecular replacement. Its overall fold is similar to that of other flavodoxins, with a central five-stranded parallel beta-sheet flanked on either side by alpha-helices. An eight-residue insertion, compared with other long-chain flavodoxins, forms a short 3(10) helix preceding the start of the alpha3 helix. The flavin mononucleotide (FMN) cofactor is flanked by a leucine on its re face instead of the more conserved tryptophan, resulting in a more solvent-accessible FMN binding site and stabilization of the hydroquinone (hq) state. In particular the absence of a hydrogen bond to the N5 atom of the oxidized FMN was identified, which destabilizes the ox form, as well as an exceptionally large patch of acidic residues in the vicinity of the FMN N1 atom, which destabilizes the hq form. It is also argued that the presence of a Gly at position 58 in the sequence stabilizes the semiquinone (sq) form, as a result, raising the E2 value in particular.  相似文献   

12.
Flavodoxins are small flavin mononucleotide (FMN)‐containing proteins that mediate a variety of electron transfer processes. The primary sequence of flavodoxin from Fusobacterium nucleatum, a pathogenic oral bacterium, is marked with a number of distinct features including a glycine to lysine (K13) substitution in the highly conserved phosphate‐binding loop (T/S‐X‐T‐G‐X‐T), variation in the aromatic residues that sandwich the FMN cofactor, and a more even distribution of acidic and basic residues. The Eox/sq (oxidized/semiquinone; ?43 mV) and Esq/hq (semiquinone/hydroquinone; ?256 mV) are the highest recorded reduction potentials of known long‐chain flavodoxins. These more electropositive values are a consequence of the apoprotein binding to the FMN hydroquinone anion with ~70‐fold greater affinity compared to the oxidized form of the cofactor. Inspection of the FnFld crystal structure revealed the absence of a hydrogen bond between the protein and the oxidized FMN N5 atom, which likely accounts for the more electropositive Eox/sq. The more electropositive Esq/hq is likely attributed to only one negatively charged group positioned within 12 Å of the FMN N1. We show that natural substitutions of highly conserved residues partially account for these more electropositive reduction potentials.  相似文献   

13.
The oxidation-reduction potentials for the riboflavin complex of the Desulfovibrio vulgaris flavodoxin are substantially different from those of the flavin mononucleotide (FMN) containing native protein, with the midpoint potential for the semiquinone-hydroquinone couple for the riboflavin complex being 180 mV less negative. This increase has been attributed to the absence in the riboflavin complex of unfavorable electrostatic effects of the dianionic 5'-phosphate of the FMN on the stability of the flavin hydroquinone anion. In this study, 15N and 1H-15N heteronuclear single-quantum coherence nuclear magnetic resonance spectroscopic studies demonstrate that when bound to the flavodoxin, (1) the N1 of the riboflavin hydroquinone remains anionic at pH 7.0 so the protonation of the hydroquinone is not responsible for this increase, (2) the N5 position is much more exposed and may be hydrogen bonded to solvent, and (3) that while the hydrogen bonding interaction at the N3H appears stronger, that at the N5H in the reduced riboflavin is substantially weaker than for the native FMN complex. Thus, the higher reduction potential of the riboflavin complex is primarily the consequence of altered interactions with the flavin ring that affect hydrogen bonding with the N5H that disproportionately destabilize the semiquinone state of the riboflavin rather than through the absence of the electrostatic effects of the 5'-phosphate on the hydroquinone state.  相似文献   

14.
Flavoproteins can dramatically adjust the thermodynamics and kinetics of electron transfer at their flavin cofactor. A versatile regulatory tool is proton transfer. Here, we demonstrate the significance of proton-coupled electron transfer to redox tuning and semiquinone (sq) stability in photolyases (PLs) and cryptochromes (CRYs). These light-responsive proteins share homologous overall architectures and FAD-binding pockets, yet they have evolved divergent functions that include DNA repair, photomorphogenesis, regulation of circadian rhythm, and magnetoreception. We report the first measurement of both FAD redox potentials for cyclobutane pyrimidine dimer PL (CPD-PL, Anacystis nidulans). These values, E(1)(hq/sq) = -140 mV and E(2)(sq/ox) = -219 mV, where hq is FAD hydroquinone and ox is oxidized FAD, establish that the sq is not thermodynamically stabilized (ΔE = E(2) - E(1) = -79 mV). Results with N386D CPD-PL support our earlier hypothesis of a kinetic barrier to sq oxidation associated with proton transfer. Both E(1) and E(2) are upshifted by ~ 100 mV in this mutant; replacing the N5-proximal Asn with Asp decreases the driving force for sq oxidation. However, this Asp alleviates the kinetic barrier, presumably by acting as a proton shuttle, because the sq in N386D CPD-PL oxidizes orders of magnitude more rapidly than wild type. These data clearly reveal, as suggested for plant CRYs, that an N5-proximal Asp can switch on proton transfer and modulate sq reactivity. However, the effect is context-dependent. More generally, we propose that PLs and CRYs tune the properties of their N5-proximal residue to adjust the extent of proton transfer, H-bonding patterns, and changes in protein conformation associated with electron transfer at the flavin.  相似文献   

15.
Kasim M  Swenson RP 《Biochemistry》2000,39(50):15322-15332
A surface loop in the flavodoxin from Clostridium beijerinckii comprised of residues -Met(56)-Gly-Asp-Glu(59)- forms a four-residue reverse turn which undergoes a conversion from a mix of cis/trans peptide configurations that approximate a type II configuration in the oxidized state to a type II' turn upon reduction of the bound flavin mononucleotide (FMN) cofactor. This change results in the formation of a new hydrogen bond between the N(5)H of the reduced cofactor and the carbonyl group of Gly57 of the central peptide bond of the turn, an interaction that is thought to contribute to the modulation of the oxidation-reduction potentials of the cofactor [Ludwig, M. L., Pattridge, K. A., Metzger, A. L., Dixon, M. M., Eren, M., Feng, Y., and Swenson, R. P. (1997) Biochemistry 36, 1259-1280]. In this study, the direct linkage of the conformational energetics of this turn to the stabilization of the FMN semiquinone was established by systematically replacing the second and third residues of the turn (Gly57 and Asp58) with the -Gly-Gly-, -Gly-Ala-, -Ala-Gly-, and -Ala-Ala- dipeptidyl sequences. On the basis of published position specific preferences for residues with side chains (mimicked by Ala) and glycine, a strong correlation was observed between E(ox/sq) and the calculated free-energy differences between the type II and type II' conformations of each of these sequence combinations. The -Ala-Gly- sequence, which favors the type II turn configuration primarily adopted in the oxidized state, displays a E(ox/sq) value that is about 150 mV more negative than that for the wild-type-like -Gly-Ala- sequence, which prefers the type II' conformation observed in the reduced states. The -Gly-Gly- and -Ala-Ala- mutants exhibit intermediate E(ox/sq) values consistent with their ambivalent turn preferences. The potential changes are primarily the result of alterations in the stability of the semiquinone state. These results provide more conclusive evidence for the crucial role of this conformational change in the modulation of the redox potentials of this flavodoxin. Furthermore, this study establishes a direct association between the conformational energetics of the protein, induced in this case by the sequence specificity of a beta-turn, and the differential thermodynamic stabilization of specific redox states of the cofactor, demonstrating another means by which flavoproteins can modulate the redox potentials of the bound cofactor.  相似文献   

16.
M Kasim  R P Swenson 《Biochemistry》2001,40(45):13548-13555
The four-residue reverse turn -Met56-Gly-Asp-Glu59- in the Clostridium beijerinckii flavodoxin provides the majority of the critical interactions with the isoalloxazine ring of the flavin mononucleotide (FMN) cofactor that contribute to the binding and the differential stabilization of its three redox states. Direct side chain contacts include the sulfur-ring interaction of Met56, which primarily influences the oxidized and hydroquinone states, and the hydrogen bond by Glu59 with the N3H, which directly (and indirectly through its "anchoring" function) influences all three states to various extents. Involving a novel redox-dependent conformational change, the hydrogen bond formed between the carbonyl group of Gly57 and the N5H of the reduced cofactor strongly influences the stability of the semiquinone state. In this study, the sequential elimination of all side chain interactions in various combinations through a systematic alanine-scanning mutagenesis approach was conducted to more completely understand the functional inter-relationships as well as any synergistic interactions that might occur within the loop. In general, additive effects for each side chain on the midpoint potentials for both couples were observed except for the hydroquinone state where some degree of nonadditivity was noted in multiple mutants involving Glu59. The study concluded with the generation of the triple mutant -Ala56-Gly-Ala-Ala59- in which all side chain interactions are removed. Gly57 was left unchanged because of its critical conformational contribution. Remarkably, this mutant retained the ability to bind the FMN and to thermodynamically stabilize the semiquinone state despite the absence of all side chain interactions. Collectively, these observations emphasize the overriding importance of the main chain interactions with the N5H of the FMN and the associated redox-dependent conformational change in this loop and leaves little doubt as to its role in the thermodynamic stabilization of the neutral semiquinone state of the FMN cofactor.  相似文献   

17.
The midpoint reduction potentials of the FAD cofactor in wild-type Methylophilus methylotrophus (sp. W3A1) electron-transferring flavoprotein (ETF) and the alphaR237A mutant were determined by anaerobic redox titration. The FAD reduction potential of the oxidized-semiquinone couple in wild-type ETF (E'(1)) is +153 +/- 2 mV, indicating exceptional stabilization of the flavin anionic semiquinone species. Conversion to the dihydroquinone is incomplete (E'(2) < -250 mV), because of the presence of both kinetic and thermodynamic blocks on full reduction of the FAD. A structural model of ETF (Chohan, K. K., Scrutton, N. S., and Sutcliffe, M. J. (1998) Protein Pept. Lett. 5, 231-236) suggests that the guanidinium group of Arg-237, which is located over the si face of the flavin isoalloxazine ring, plays a key role in the exceptional stabilization of the anionic semiquinone in wild-type ETF. The major effect of exchanging alphaArg-237 for Ala in M. methylotrophus ETF is to engineer a remarkable approximately 200-mV destabilization of the flavin anionic semiquinone (E'(2) = -31 +/- 2 mV, and E'(1) = -43 +/- 2 mV). In addition, reduction to the FAD dihydroquinone in alphaR237A ETF is relatively facile, indicating that the kinetic block seen in wild-type ETF is substantially removed in the alphaR237A ETF. Thus, kinetic (as well as thermodynamic) considerations are important in populating the redox forms of the protein-bound flavin. Additionally, we show that electron transfer from trimethylamine dehydrogenase to alphaR237A ETF is severely compromised, because of impaired assembly of the electron transfer complex.  相似文献   

18.
Bradley LH  Swenson RP 《Biochemistry》2001,40(30):8686-8695
The role of the hydrogen bonding interaction with the N(3)H of the flavin cofactor in the modulation of the redox properties of flavoproteins has not been extensively investigated. In the flavodoxin from Clostridium beijerinckii, the gamma-carboxylate group of glutamate-59 serves as a dual hydrogen bond acceptor with the N(3)H of flavin mononucleotide (FMN) cofactor and the amide hydrogen of the adjacent polypeptide backbone in all three oxidation states. This "bridging" interaction serves to anchor the FMN in the binding site, which, based on the E59Q mutant, indirectly affects the stability of the neutral flavin semiquinone by facilitating a strong and critical interaction at the FMN N(5)H [Bradley, L. H., and Swenson, R. P. (1999) Biochemistry 38, 12377-12386]. In this study, the specific role of the N(3)H interaction itself was investigated through the systematic replacement of Glu59 by aspartate, asparagine, and alanine in an effort to weaken, disrupt, and/or eliminate this interaction, respectively. Just as for the E59Q mutant, each replacement significantly weakened the binding of the cofactor, particularly for the semiquinone state, affecting the midpoint potentials of each one-electron couple in opposite directions. (1)H-(15)N HSQC nuclear magnetic resonance (NMR) spectroscopic studies revealed that not only was the N(3)H interaction weakened as anticipated, but so also was the hydrogen bonding interaction with the N(5)H. Using the temperature coefficients of the N(5)H to quantify and correct for changes in this interaction, the contribution of the N(3)H hydrogen bond to the binding of each redox state of the FMN was isolated and estimated. Based on this analysis, the N(3)H hydrogen bonding interaction appears to contribute primarily to the stability of the oxidized state (by as much as 2 kcal/mol) and to a lesser extent the reduced states. It is concluded that this interaction contributes only modestly (<45 mV) to the modulation of the midpoint potential for each redox couple in the flavodoxin. These conclusions are generally consistent with ab initio calculations and model studies on the non-protein-bound cofactor.  相似文献   

19.
Formation of the anionic flavosemiquinone was observed spectrophotometrically during the anaerobic photo-irradiation of Alcaligenes sp. choline oxidase in the presence of EDTA. Further irradiation slowly converted the semiquinone form into the fully reduced state. The presence of a catalytic amount of riboflavin greatly enhances the photoreduction rate not only to the semiquinone state but also to the fully reduced state. This semiquinone species has low reactivity toward the substrate, choline or betaine aldehyde, as well as toward oxygen. This low reactivity toward oxygen is unique to the semiquinone form of a flavoprotein oxidase. The oxidized enzyme forms a complex with betaine, the product of the enzymatic reaction of choline oxidase. The dissociation constant for this complex was found to be 17 mM by spectroscopic titration. Anaerobic photo-irradiation of the enzyme with a saturating amount of betaine in the absence of EDTA produces, with no detectable semiquinone formation, an absorption spectrum which resembles (but significantly differs from) that of the fully reduced form. This species was found to comprise two flavin species. One of them is rapidly oxidized to the oxidized form by oxygen and is thus assigned as the fully reduced state. The other is converted slowly to the oxidized form upon aerobic standing in the dark. We tentatively assigned this latter species as a C(4a)-adduct. Formaldehyde was detected as a product of this photoreaction. The amount of formaldehyde formed coincided with that of the fully reduced enzyme. On the basis of the results obtained we propose a mechanism of the photoreaction of the enzyme in the presence of betaine where a C(4a)-adduct and the fully reduced enzyme via an N(5)-adduct are formed. Betaine also affects the dithionite reduction. In the dithionite reduction of the oxidized enzyme, the semiquinone species is an intermediate in the conversion of the oxidized to the fully reduced form, while the reduction of the oxidized enzyme-betaine complex with dithionite produces the fully reduced form without any significant formation of the semiquinone species.  相似文献   

20.
We investigated the mechanism of recognition and activation of substrate by D-amino acid oxidase (DAO) by thermodynamical and spectrophotometric methods using zwitterionic ligands [N-methylisonicotinate (NMIN), trigonelline, and homarine] and monoanionic ligands as model compounds of the substrate and the product. In terms of the charge within the substrate D-amino acid, monoanionic (e.g., benzoate), zwitterionic (e.g., NMIN), and dianionic (e.g., terephthalate) ligands are thought to be good models for neutral, basic, and acidic amino acids, respectively, because when a substrate binds to DAO, as previously reported, the a-ammonium group (-NH(3)(+)) probably loses a proton to become neutral (-NH(2)) before the oxidation. Zwitterionic ligands can also be good model compounds of product in the purple complex (the complex of reduced DAO with the product imino acid), because the imino nitrogen of the imino acid is in a protonated cationic form. We also discuss electrostatic interaction, steric effect, and charge-transfer interaction as factors which affect the affinity of substrate/ligand for DAO. Monoanionic ligands have high affinity for neutral forms of oxidized and semiquinoid DAO, while zwitterionic ligands have high affinity for anionic forms of oxidized, semiquinoid, and reduced DAO; this difference was explained by the electrostatic interaction in the active site. The low affinity of homarine (N-methylpicolinate) for oxidized DAO, as in the case of o-methylbenzoate, is due to steric hindrance: one of the ortho carbons of benzoate is near the phenol carbons of Tyr228 and the other ortho carbon is near the carbonyl oxygen of Gly313. The correlation of the affinity of meta- and para-substituted benzoates for oxidized DAO with their Hammet's s values are explained by the HOMO-LUMO interaction between the phenol group of Tyr224 and the benzene ring of benzoate derivative. The pK(a) of neutral flavin [N(3)-H of oxidized flavin, N(5)-H of semiquinoid flavin, and N(1)-H of reduced flavin] decreases by its binding to the apoenzyme. The magnitude of the decrement is oxidized flavin < semiquinoid flavin < reduced flavin. The largest factor in the substantially low pK(a) of reduced flavin in DAO is probably the steric hindrance between the hydrogen atom of H-N(1)(flavin) and the hydrogen atom of H-N of Gly315, which becomes significant when a hydrogen is bound to N(1) of flavin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号