首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rad54 protein is a member of the Swi2/Snf2-like family of DNA-dependent/stimulated ATPases that dissociate and remodel protein complexes on dsDNA. Rad54 functions in the recombinational DNA repair (RAD52) pathway. Here we show that Rad54 protein dissociates Rad51 from nucleoprotein filaments formed on dsDNA. Addition of Rad54 protein overcomes inhibition of DNA strand exchange by Rad51 protein bound to substrate dsDNA. Species preference in the Rad51 dissociation and DNA strand exchange assays underlines the importance of specific Rad54-Rad51 protein interactions. Rad51 protein is unable to release dsDNA upon ATP hydrolysis, leaving it stuck on the heteroduplex DNA product after DNA strand exchange. We suggest that Rad54 protein is involved in the turnover of Rad51-dsDNA filaments.  相似文献   

2.
Rad54 protein is a Snf2-like ATPase with a specialized function in the recombinational repair of DNA damage. Rad54 is thought to stimulate the search of homology via formation of a specific complex with the presynaptic Rad51 filament on single-stranded DNA. Herein, we address the interaction of Rad54 with Rad51 filaments on double-stranded (ds) DNA, an intermediate in DNA strand exchange with unclear functional significance. We show that Saccharomyces cerevisiae Rad54 exerts distinct modes of ATPase activity on partially and fully saturated filaments of Rad51 protein on dsDNA. The highest ATPase activity is observed on dsDNA containing short patches of yeast Rad51 filaments resulting in a 6-fold increase compared with protein-free DNA. This enhanced ATPase mode of yeast Rad54 can also be elicited by partial filaments of human Rad51 protein but to a lesser extent. In contrast, the interaction of Rad54 protein with duplex DNA fully covered with Rad51 is entirely species-specific. When yeast Rad51 fully covers dsDNA, Rad54 protein hydrolyzes ATP in a reduced mode at 60-80% of its rate on protein-free DNA. Instead, saturated filaments with human Rad51 fail to support the yeast Rad54 ATPase. We suggest that the interaction of Rad54 with dsDNA-Rad51 complexes is of functional importance in homologous recombination.  相似文献   

3.
Rad51 and Rad54 are key proteins that collaborate during homologous recombination. Rad51 forms a presynaptic filament with ATP and ssDNA active in homology search and DNA strand exchange, but the precise role of its ATPase activity is poorly understood. Rad54 is an ATP-dependent dsDNA motor protein that can dissociate Rad51 from dsDNA, the product complex of DNA strand exchange. Kinetic analysis of the budding yeast proteins revealed that the catalytic efficiency of the Rad54 ATPase was stimulated by partial filaments of wild-type and Rad51-K191R mutant protein on dsDNA, unambiguously demonstrating that the Rad54 ATPase activity is stimulated under these conditions. Experiments with Rad51-K191R as well as with wild-type Rad51-dsDNA filaments formed in the presence of ATP, ADP or ATP-γ-S showed that efficient Rad51 turnover from dsDNA requires both the Rad51 ATPase and the Rad54 ATPase activities. The results with Rad51-K191R mutant protein also revealed an unexpected defect in binding to DNA. Once formed, Rad51-K191R-DNA filaments appeared normal upon electron microscopic inspection, but displayed significantly increased stability. These biochemical defects in the Rad51-K191R protein could lead to deficiencies in presynapsis (filament formation) and postsynapsis (filament disassembly) in vivo.  相似文献   

4.
Saccharomyces cerevisiae RAD54 gene functions in the formation of heteroduplex DNA, a key intermediate in recombination processes. Rad54 is monomeric in solution, but forms a dimer/oligomer on DNA. Rad54 dimer/oligomer alters the conformation of the DNA double helix in an ATP-dependent manner, as revealed by a change in the DNA linking number in a topoisomerase I-linked reaction. DNA conformational alteration does not occur in the presence of non-hydrolyzable ATP analogues, nor when mutant rad54 proteins defective in ATP hydrolysis replace Rad54. Accordingly, the Rad54 ATPase activity is shown to be required for biological function in vivo and for promoting Rad51-mediated homologous DNA pairing in vitro. Taken together, the results are consistent with a model in which a Rad54 dimer/oligomer promotes nascent heteroduplex joint formation via a specific interaction with Rad51 protein and an ability to transiently unwind duplex DNA.  相似文献   

5.
Rad54 protein is a key member of the RAD52 epistasis group required for homologous recombination in eukaryotes. Rad54 is a duplex DNA translocase that remodels both DNA and protein–DNA complexes, and functions at multiple steps in the recombination process. Here we use biochemical criteria to demonstrate the existence of this important protein in a prokaryotic organism. The Sulfolobus solfataricus Rad54 (SsoRad54) protein is a double-strand DNA-dependent ATPase that can alter the topology of duplex DNA. Like its eukaryotic homolog, it interacts directly with the S. solfataricus Rad51 homologue, SsoRadA, to stimulate DNA strand exchange. Confirmation of this protein as an authentic Rad54 homolog establishes an essential phylogenetic bridge for identifying Rad54 homologs in the archaeal and bacterial domains.  相似文献   

6.
In Saccharomyces cerevisiae, the Rad54 protein participates in the recombinational repair of double-strand DNA breaks together with the Rad51, Rad52, Rad55 and Rad57 proteins. In vitro, Rad54 interacts with Rad51 and stimulates DNA strand exchange promoted by Rad51 protein. Rad54 is a SWI2/SNF2-related protein that possesses double-stranded DNA-dependent ATPase activity and changes DNA topology in an ATP hydrolysis-dependent manner. Here we show that Rad54 catalyzes bidirectional nucleosome redistribution by sliding nucleosomes along DNA. Nucleosome redistribution is greatly stimulated by the Rad51 nucleoprotein filament but does not require the presence of homologous single-stranded DNA within the filament. On the basis of these data, we propose that Rad54 facilitates chromatin remodeling and, perhaps more generally, protein clearing at the homology search step of genetic recombination.  相似文献   

7.
Effects of tumor-associated mutations on Rad54 functions   总被引:2,自引:0,他引:2  
Yeast RAD54 gene, a member of the RAD52 epistasis group, plays an important role in homologous recombination and DNA double strand break repair. Rad54 belongs to the Snf2/Swi2 protein family, and it possesses a robust DNA-dependent ATPase activity, uses free energy from ATP hydrolysis to supercoil DNA, and cooperates with the Rad51 recombinase in DNA joint formation. There are two RAD54-homologous genes in human cells, hRAD54 and RAD54B. Mutations in these human genes have been found in tumors. These tumor-associated mutations map to conserved regions of the hRad54 and hRad54B proteins. Here we introduced the equivalent mutations into the Saccharomyces cerevisiae RAD54 gene in an effort to examine the functional consequences of these gene changes. One mutant, rad54 G484R, showed sensitivity to DNA-damaging agents and reduced homologous recombination rates, indicating a loss of function. Even though the purified rad54 G484R mutant protein retained the ability to bind DNA and interact with Rad51, it was nearly devoid of ATPase activity and was similarly defective in DNA supercoiling and D-loop formation. Two other mutants, rad54 N616S and rad54 D442Y, were not sensitive to genotoxic agents and behaved like the wild type allele in homologous recombination assays. Consistent with the mild phenotype associated with the rad54 N616S allele, its encoded protein was similar to wild type Rad54 protein in biochemical attributes. Because dysfunctional homologous recombination gives rise to genome instability, our results are consistent with the premise that tumor-associated mutations in hRad54 and Rad54B could contribute to the tumor phenotype or enhance the genome instability seen in tumor cells.  相似文献   

8.
Rad51 protein forms nucleoprotein filaments on single-stranded DNA (ssDNA) and then pairs that DNA with the complementary strand of incoming duplex DNA. In apparent contrast with published results, we demonstrate that Rad51 protein promotes an extensive pairing of long homologous DNAs in the absence of replication protein A. This pairing exists only within the Rad51 filament; it was previously undetected because it is lost upon deproteinization. We further demonstrate that RPA has a critical postsynaptic role in DNA strand exchange, stabilizing the DNA pairing initiated by Rad51 protein. Stabilization of the Rad51-generated DNA pairing intermediates can be can occur either by binding the displaced strand with RPA or by degrading the same DNA strand using exonuclease VII. The optimal conditions for Rad51-mediated DNA strand exchange used here minimize the secondary structure in single-stranded DNA, minimizing the established presynaptic role of RPA in facilitating Rad51 filament formation. We verify that RPA has little effect on Rad51 filament formation under these conditions, assigning the dramatic stimulation of strand exchange nevertheless afforded by RPA to its postsynaptic function of removing the displaced DNA strand from Rad51 filaments.  相似文献   

9.
The highly conserved Saccharomyces cerevisiae Rad51 protein plays a central role in both mitotic and meiotic homologous DNA recombination. Seven members of the Rad51 family have been identified in vertebrate cells, including Rad51, Dmc1, and five Rad51-related proteins referred to as Rad51 paralogs, which share 20 to 30% sequence identity with Rad51. In chicken B lymphocyte DT40 cells, we generated a mutant with RAD51B/RAD51L1, a member of the Rad51 family, knocked out. RAD51B(-/-) cells are viable, although spontaneous chromosomal aberrations kill about 20% of the cells in each cell cycle. Rad51B deficiency impairs homologous recombinational repair (HRR), as measured by targeted integration, sister chromatid exchange, and intragenic recombination at the immunoglobulin locus. RAD51B(-/-) cells are quite sensitive to the cross-linking agents cisplatin and mitomycin C and mildly sensitive to gamma-rays. The formation of damage-induced Rad51 nuclear foci is much reduced in RAD51B(-/-) cells, suggesting that Rad51B promotes the assembly of Rad51 nucleoprotein filaments during HRR. These findings show that Rad51B is important for repairing various types of DNA lesions and maintaining chromosome integrity.  相似文献   

10.
The Saccharomyces cerevisiae RDH54-encoded product, a member of the Swi2/Snf2 protein family, is needed for mitotic and meiotic interhomologue recombination and DNA repair. Previous biochemical studies employing Rdh54 purified from yeast cells have shown DNA-dependent ATP hydrolysis and DNA supercoiling by this protein, indicative of a DNA translocase function. Importantly, Rdh54 physically interacts with the Rad51 recombinase and promotes D-loop formation by the latter. Unfortunately, the low yield of Rdh54 from the yeast expression system has greatly hampered the progress on defining the functional interactions of this Swi2/Snf2-like factor with Rad51. Here we describe an E. coli expression system and purification scheme that together provide milligram quantities of nearly homogeneous Rdh54. Using this material, we demonstrate that Rdh54-mediated DNA supercoiling leads to transient DNA strand opening. Furthermore, at the expense of ATP hydrolysis, Rdh54 removes Rad51 from DNA. We furnish evidence that the Rad51 binding domain resides within the N terminus of Rdh54. Accordingly, N-terminal truncation mutants of Rdh54 that fail to bind Rad51 are also impaired for functional interactions with the latter. Interestingly, the rdh54 K352R mutation that ablates ATPase activity engenders a DNA repair defect even more severe than that seen in the rdh54Delta mutant. These results provide molecular information concerning the role of Rdh54 in homologous recombination and DNA repair, and they also demonstrate the functional significance of Rdh54.Rad51 complex formation. The Rdh54 expression and purification procedures described here should facilitate the functional dissection of this DNA recombination/repair factor.  相似文献   

11.
Yeast Rad51 promotes homologous pairing and strand exchange in vitro, but this activity is inefficient in the absence of the accessory proteins, RPA, Rad52, Rad54 and the Rad55-Rad57 heterodimer. A class of rad51 alleles was isolated that suppresses the requirement for RAD55 and RAD57 in DNA repair, but not the other accessory factors. Five of the six mutations isolated map to the region of Rad51 that by modeling with RecA corresponds to one of the DNA-binding sites. The other mutation is in the N-terminus of Rad51 in a domain implicated in protein-protein interactions and DNA binding. The Rad51-I345T mutant protein shows increased binding to single- and double-stranded DNA, and is proficient in displacement of replication protein A (RPA) from single-stranded DNA, suggesting that the normal function of Rad55-Rad57 is promotion and stabilization of Rad51-ssDNA complexes.  相似文献   

12.
Human Rad51 (hRad51) and Rad54 proteins are key members of the RAD52 group required for homologous recombination. We show an ability of hRad54 to promote transient separation of the strands in duplex DNA via its ATP hydrolysis-driven DNA supercoiling function. The ATPase, DNA supercoiling, and DNA strand opening activities of hRad54 are greatly stimulated through an interaction with hRad51. Importantly, we demonstrate that hRad51 and hRad54 functionally cooperate in the homologous DNA pairing reaction that forms recombination DNA intermediates. Our results should provide a biochemical model for dissecting the role of hRad51 and hRad54 in recombination reactions in human cells.  相似文献   

13.
Rad51p is a eukaryotic homolog of RecA, the central homologous pairing and strand exchange protein in Escherichia coli. Rad54p belongs to the Swi2p/Snf2p family of DNA-stimulated ATPases. Both proteins are also important members of the RAD52 group which controls recombinational DNA damage repair of double-strand breaks and other DNA lesions in Saccharomyces cerevisiae. Here we demonstrate by genetic, molecular and biochemical criteria that Rad51 and Rad54 proteins interact. Strikingly, overexpression of Rad54p can functionally suppress the UV and methyl methanesulfonate sensitivity caused by a deletion of the RAD51 gene. However, no suppression was observed for the defects of rad51 cells in the repair of gamma-ray-induced DNA damage, mating type switching or spontaneous hetero-allelic recombination. This suppression is genetically dependent on the presence of two other members of the recombinational repair group, RAD55 and RAD57. Our data provide compelling evidence that Rad51 and Rad54 proteins interact in vivo and that this interaction is functionally important for recombinational DNA damage repair. As both proteins are conserved throughout evolution from yeasts to humans, a similar protein-protein interaction may be expected in other organisms.  相似文献   

14.
The Saccharomyces cerevisiae Dmc1 and Tid1 proteins are required for the pairing of homologous chromosomes during meiotic recombination. This pairing is the precursor to the formation of crossovers between homologs, an event that is necessary for the accurate segregation of chromosomes. Failure to form crossovers can have serious consequences and may lead to chromosomal imbalance. Dmc1, a meiosis-specific paralog of Rad51, mediates the pairing of homologous chromosomes. Tid1, a Rad54 paralog, although not meiosis-specific, interacts with Dmc1 and promotes crossover formation between homologs. In this study, we show that purified Dmc1 and Tid1 interact physically and functionally. Dmc1 forms stable nucleoprotein filaments that can mediate DNA strand invasion. Tid1 stimulates Dmc1-mediated formation of joint molecules. Under conditions optimal for Dmc1 reactions, Rad51 is specifically stimulated by Rad54, establishing that Dmc1-Tid1 and Rad51-Rad54 function as specific pairs. Physical interaction studies show that specificity in function is not dictated by direct interactions between the proteins. Our data are consistent with the hypothesis that Rad51-Rad54 function together to promote intersister DNA strand exchange, whereas Dmc1-Tid1 tilt the bias toward interhomolog DNA strand exchange.  相似文献   

15.
Rad51 is a key protein in homologous recombination performing homology search and DNA strand invasion. After DNA strand exchange Rad51 protein is stuck on the double-stranded heteroduplex DNA product of DNA strand invasion. This is a problem, because DNA polymerase requires access to the invading 3′-OH end to initiate DNA synthesis. Here we show that, the Saccharomyces cerevisiae dsDNA motor protein Rad54 solves this problem by dissociating yeast Rad51 protein bound to the heteroduplex DNA after DNA strand invasion. The reaction required species-specific interaction between both proteins and the ATPase activity of Rad54 protein. This mechanism rationalizes the in vivo requirement of Rad54 protein for the turnover of Rad51 foci and explains the observed dependence of the transition from homologous pairing to DNA synthesis on Rad54 protein in vegetative and meiotic yeast cells.  相似文献   

16.
In human cells, error-free repair of DNA double-strand breaks requires the DNA pairing and strand exchange activities of RAD51 recombinase. Activation of RAD51 recombination activities requires the assembly of RAD51 presynaptic filaments on the single-stranded DNA that forms at resected DSB ends. Mutations in proteins that control presynaptic filament assembly, such as BRCA2, and in RAD51 itself, are associated with human breast cancer. Here we describe the properties of two mutations in RAD51 protein that derive from human lung and kidney tumors, respectively. Sequence variants Q268P and Q272L both map to the DNA binding loop 2 (L2) region of RAD51, a motif that is involved in DNA binding and in the allosteric activation of ATP hydrolysis and DNA strand exchange activities. Both mutations alter the thermal stability, DNA binding, and ATPase properties of RAD51, however both variants retain intrinsic DNA strand exchange activity towards oligonucleotide substrates under optimized conditions. In contrast, both Q268P and Q272L variants exhibit drastically reduced DNA strand exchange activity in reaction mixtures containing long homologous ssDNA and dsDNA substrates and human RPA protein. Mixtures of wild-type and variant proteins also exhibit reduced DNA strand exchange activity, suggesting that heterozygous mutations could negatively affect DNA recombination and repair processes in vivo. Together, the findings of this study suggest that hypomorphic missense mutations in RAD51 protein could be drivers of genomic instability in cancer cells, and thereby contribute to the etiology of metastatic disease.  相似文献   

17.
The efficient and accurate repair of DNA double strand breaks (DSBs) is critical to cell survival, and defects in this process can lead to genome instability and cancers. In eukaryotes, the Rad52 group of proteins dictates the repair of DSBs by the error-free process of homologous recombination (HR). A critical step in eukaryotic HR is the formation of the initial Rad51-single-stranded DNA presynaptic nucleoprotein filament. This presynaptic filament participates in a homology search process that leads to the formation of a DNA joint molecule and recombinational repair of the DSB. Recently, we showed that the Rad54 protein functions as a mediator of Rad51 binding to single-stranded DNA, and here, we find that this activity does not require ATP hydrolysis. We also identify a novel Rad54-dependent chromatin remodeling event that occurs in vivo during the DNA strand invasion step of HR. This ATP-dependent remodeling activity of Rad54 appears to control subsequent steps in the HR process.  相似文献   

18.
The Rad51 protein from the methylotrophic yeast Pichia angusta (Rad51(Pa)) of the taxonomic complex Hansenula polymorpha is a homolog of the RecA-RadA-Rad51 protein superfamily, which promotes homologous recombination and recombination repair in prokaryotes and eukaryotes. We cloned the RAD51 gene from the cDNA library of the thermotolerant P. angusta strain BKM Y1397. Induction of this gene in a rad51-deficient Saccharomyces cerevisiae strain partially complemented the survival rate after ionizing radiation. Purified Rad51(Pa) protein exhibited properties typical of the superfamily, including the stoichiometry of binding to single-stranded DNA (ssDNA) (one protomer of Rad51(Pa) per 3 nucleotides) and DNA specificity for ssDNA-dependent ATP hydrolysis [poly(dC) > poly(dT) > phiX174 ssDNA > poly(dA) > double-stranded M13 DNA]. An inefficient ATPase and very low cooperativity for ATP interaction position Rad51(Pa) closer to Rad51 than to RecA. Judging by thermoinactivation, Rad51(Pa) alone was 20-fold more thermostable at 37 degrees C than its S. cerevisiae homolog (Rad51(Sc)). Moreover, it maintained ssDNA-dependent ATPase and DNA transferase activities up to 52 to 54 degrees C, whereas Rad51(Sc) was completely inactive at 47 degrees C. A quick nucleation and an efficient final-product formation in the strand exchange reaction promoted by Rad51(Pa) occurred only at temperatures above 42 degrees C. These reaction characteristics suggest that Rad51(Pa) is dependent on high temperatures for activity.  相似文献   

19.
Purified human Rad51 protein (hRad51) catalyses ATP-dependent homologous pairing and strand transfer reactions, characteristic of a central role in homologous recombination and double-strand break repair. Using single-stranded circular and partially homologous linear duplex DNA, we found that the length of heteroduplex DNA formed by hRad51 was limited to approximately 1.3 kb, significantly less than that observed with Escherichia coli RecA and Saccharomyces cerevisiae Rad51 protein. Joint molecule formation required the presence of a 3' or 5'-overhang on the duplex DNA substrate and initiated preferentially at the 5'-end of the complementaryx strand. These results are consistent with a preference for strand transfer in the 3'-5' direction relative to the single-stranded DNA. The human single-strand DNA-binding protein, hRP-A, stimulated hRad51-mediated joint molecule formation by removing secondary structures from single-stranded DNA, a role similar to that played by E. coli single-strand DNA-binding protein in RecA-mediated strand exchange reactions. Indeed, E. coli single-strand DNA-binding protein could substitute for hRP-A in hRad51-mediated reactions. Joint molecule formation by hRad51 was stimulated or inhibited by hRad52, dependent upon the reaction conditions. The inhibitory effect could be overcome by the presence of hRP-A or excess heterologous DNA.  相似文献   

20.
Homologous recombination is important for the repair of double-stranded DNA breaks in all organisms. Rad51 and Rad54 proteins are two key components of the homologous recombination machinery in eukaryotes. In vitro, Rad51 protein assembles with single-stranded DNA to form the helical nucleoprotein filament that promotes DNA strand exchange, a basic step of homologous recombination. Rad54 protein interacts with this Rad51 nucleoprotein filament and stimulates its DNA pairing activity, suggesting that Rad54 protein is a component of the nucleoprotein complex involved in the DNA homology search. Here, using physical criteria, we demonstrate directly the formation of Rad54-Rad51-DNA nucleoprotein co-complexes that contain equimolar amounts of each protein. The binding of Rad54 protein significantly stabilizes the Rad51 nucleoprotein filament formed on either single-stranded DNA or double-stranded DNA. The Rad54-stabilized nucleoprotein filament is more competent in DNA strand exchange and acts over a broader range of solution conditions. Thus, the co-assembly of an interacting partner with the Rad51 nucleoprotein filament represents a novel means of stabilizing the biochemical entity central to homologous recombination, and reveals a new function of Rad54 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号