首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fetal liver- and thymus-derived NK1.1+ cells do not express known Ly-49 receptors. Despite the absence of Ly-49 inhibitory receptors, fetal and neonatal NK1.1+Ly-49- cells can distinguish between class Ihigh and class Ilow target cells, suggesting the existence of other class I-specific inhibitory receptors. We demonstrate that fetal NK1. 1+Ly-49- cell lysates contain CD94 protein and that a significant proportion of fetal NK cells are bound by Qa1b tetramers. Fetal and adult NK cells efficiently lyse lymphoblasts from Kb-/-Db-/- mice. Qa1b-specific peptides Qdm and HLA-CW4 leader peptide specifically inhibited the lysis of these blasts by adult and fetal NK cells. Qdm peptide also inhibited the lysis of Qa1b-transfected human 721.221 cells by fetal NK cells. Taken together, these results suggest that the CD94/NKG2A receptor complex is the major known inhibitory receptor for class I (Qa1b) molecules on developing fetal NK cells.  相似文献   

2.
Triggering of murine NK cells by CD40 and CD86 (B7-2)   总被引:5,自引:0,他引:5  
NK cell-mediated cytotoxicity is regulated by both triggering and inhibitory signals. The interaction between MHC class I molecules expressed on target cells and specific MHC class I-binding receptors expressed by NK cells generally leads to inhibition of lysis. We have shown recently that CD80 (B7-1) in mice and CD40 in humans trigger NK cell-mediated cytotoxicity in vitro. In the present study, we show that murine CD40 and CD86 (B7-2) trigger murine NK cell-mediated cytotoxicity in vitro when expressed on tumor cells. Preincubation of the transfected cell lines with anti-CD40 F(ab')2 fragments or cytolytic T lymphocyte-associated Ag-4-Ig (CTLA-4-Ig) before the cytotoxic assay abolished the triggering effect. Furthermore, radiolabeled CD40- and B7-2-expressing cells were rapidly eliminated in vivo in an NK cell-dependent manner. NK cells from CD40 ligand (CD40L)-/- or CD28-/- mice were triggered by tumor cells transfected with CD40 and B7-2, respectively, and these transfectants were rapidly eliminated in vivo when inoculated into CD40L-/- and CD28-/- mice. This suggests that the CD40 and B7-2 molecules can interact with receptors on NK cells other than CD40L and CD28, respectively, and that these may account for some of the reactivities observed in the present study. Collectively, these data demonstrate that 1) costimulatory molecules, other than B7-1, can modulate NK cell responses in vitro, 2) they can also affect NK cell-dependent responses in vivo, and 3) parts of these reactions are independent of CD28 and CD40L.  相似文献   

3.
This study addressed the mechanisms by which HLA class I polymorphism modulates allorecognition. CTL 27S69 is an alloreactive clone raised against HLA-B*2705, with a known peptide epitope. This CTL cross-reacts with B*2702, which differs from B*2705 in the D77N, T80I, and L81A changes, but not with B*2701, which has D74Y, D77N, and L81A changes. To explain this differential recognition, B*2705 mutants mimicking subtype changes were used. The A81 mutant was not recognized, despite binding the natural epitope in vivo, suggesting that, when bound to this mutant, this peptide adopts an inappropriate conformation. The N77 and I80 mutations restored recognition in the N77A81 or I80A81 mutants. These compensatory effects explain the cross-reaction with B*2702. The Y74 and the Y74N77 mutants were weakly recognized or not recognized by CTL 27S69. This correlated with the absence or marginal presence of the peptide epitope in the Y74N77-bound pool. As with B*2701, exogenous addition of the peptide epitope sensitized Y74 and Y74N77 targets for lysis, indicating that failure to cross-react with B*2701 or these mutants was due to poor binding of the peptide in vivo and not to inappropriate presentation. The abrogating effect of Y74 was critically dependent upon the K70 residue, conserved among subtypes, as demonstrated with mutants at this position. Thus, HLA polymorphism affects allorecognition by modulating peptide binding or the conformation of bound peptides. Compensatory mutations and indirect effects of a polymorphic residue on residues conserved play a critical role.  相似文献   

4.
Syk and ZAP-70 subserve nonredundant functions in B and T lymphopoiesis. In the absence of Syk, B cell development is blocked, while T cell development is arrested in the absence of ZAP-70. The receptors and the signaling molecules required for differentiation of NK cells are poorly characterized. Here we investigate the role of the Syk protein tyrosine kinase in NK cell differentiation. Hemopoietic chimeras were generated by reconstituting alymphoid (B-, T-, NK-) recombinase-activating gene-2 x common cytokine receptor gamma-chain double-mutant mice with Syk-/- fetal liver cells. The phenotypically mature Syk-/- NK cells that developed in this context were fully competent in natural cytotoxicity and in calibrating functional inhibitory receptors for MHC molecules. Syk-deficient NK cells demonstrated reduced levels of Ab-dependent cellular cytotoxicity. Nevertheless, Syk-/- NK cells could signal through NK1. 1 and 2B4 activating receptors and expressed ZAP-70 protein. We conclude that the Syk protein tyrosine kinase is not essential for murine NK cell development, and that compensatory signaling pathways (including those mediated through ZAP-70) may sustain most NK cell functions in the absence of Syk.  相似文献   

5.
Two HLA-B27 subtypes, B*2702 and B*2705, both associated with ankylosing spondylitis, were tested for binding affinity with a panel of polyalanine model nonapeptides carrying Arg at position 2 (P2) and a series of different amino acids at position 9 (P9). The alpha chains were isolated from BTB(B*2705), C1R/B*2702 (a B*2702 transfectant cell line) and from the NW(B*2702) cell line that has a peculiar peptide presentation behavior. Peptide binding was measured by the HLA alpha chain refolding assay. The results obtained show that: 1) Peptides with basic residues (Arg and Lys) and also aliphatic (Leu) and aromatic (Phe and Tyr) peptides at P9 have a similar high affinity in the binding to B*2705; 2) B*2702 binds well to P9 aliphatic and aromatic peptides but only very weakly to P9 basic peptides. Since both B*2702 and B*2705 are associated with AS the presumed arthritogenic peptide is hypothesized to have an aromatic or aliphatic residue at position 9. Peptides with basic residues in this position would be excluded as candidates because of their low binding affinity with B*2702.  相似文献   

6.
Recognition of self peptides bound to the class I major histocompatibility complex molecule HLA-B27 is thought to trigger proliferation of autoreactive T cells and result in autoimmune arthritic diseases. Previous work from other laboratories established that a predominant feature of endogenous peptides eluted from purified B27 is an arginine at position 2. We studied the binding of peptides containing both natural and unnatural amino acids by the subtype HLA-B*2702, with the goal of gaining insight into peptide binding by this B27 subtype that is associated with susceptibility to arthritic disease. A soluble from of B*2702 was depleted of endogenous peptides. We tested the binding of peptides substituted with cysteine, homocysteine, or an alpha-amino-epsilon-mercapto hexanoic acid side chain (Amh) instead of the naturally occurring arginine at position 2, to determine whether the peptide sulfhydryl residue could be covalently linked to cysteine 67 in the B*2702 binding cleft. Although none of the altered peptide sequences bound covalently to B*2702, the affinities of the homocysteine- and Amh-substituted peptides were close to that of the native peptide sequence. Substitutions at position 2 with other side chains, such as glutamine and methionine, also resulted in peptides that bound with only slightly reduced affinity. These results demonstrate that peptide side chains other than arginine at position 2 can be accomodated within the B*2702 peptide binding site with only minor reductions in affinity. This extended repertoire of permissible B27-binding peptides should be taken into account for a consideration of disease-associated peptide sequences.  相似文献   

7.
The retro-enantio analogue of peptide 66-77 of the chemokine MCP-1 and two hexapeptide fragments 66-71 and 72-77 of the C-terminal sequence of this protein were synthesized using the Fmoc strategy of solid phase peptide synthesis. The effect of the synthetic peptides upon the MCP-1-stimulated migration of THP-1 mononuclear cells was studied in vitro. The activity of the retro-enantio analogue was found to be comparable with that of the initial peptide 66-77: both peptides inhibit the migration of monocytes and granulocytes into inflammation zones of experimental animals.  相似文献   

8.
The lytic function of human natural killer (NK) cells is markedly influenced by recognition of class I major histocompatibility complex (MHC) molecules, a process mediated by several types of activating and inhibitory receptors expressed on the NK cell. One of the most important of these mechanisms of regulation is the recognition of the non-classical class I MHC molecule HLA-E, in complex with nonamer peptides derived from the signal sequences of certain class I MHC molecules, by heterodimers of the C-type lectin-like proteins CD94 and NKG2. Using soluble, recombinant HLA-E molecules assembled with peptides derived from different leader sequences and soluble CD94/NKG2-A and CD94/NKG2-C proteins, the binding of these receptor-ligand pairs has been analysed. We show first that these interactions have very fast association and dissociation rate constants, secondly, that the inhibitory CD94/NKG2-A receptor has a higher binding affinity for HLA-E than the activating CD94/NKG2-C receptor and, finally, that recognition of HLA-E by both CD94/NKG2-A and CD94/NKG2-C is peptide dependent. There appears to be a strong, direct correlation between the binding affinity of the peptide-HLA-E complexes for the CD94/NKG2 receptors and the triggering of a response by the NK cell. These data may help to understand the balance of signals that control cytotoxicity by NK cells.  相似文献   

9.
Caldesmon is a widely distributed calmodulin- and actin-binding protein which occurs in different forms depending on the tissue or cell type under examination. On the basis of molecular weight, caldesmon species can be divided into two classes: caldesmon77 (Mr 70,000-80,000) and caldesmon150 (Mr 140,000-150,000). We have examined the phosphorylation of caldesmon77 by protein kinase C (the Ca2+/phospholipid-dependent enzyme) in vitro and in intact platelets. Caldesmon77, purified from bovine liver, could be phosphorylated by purified rat brain protein kinase C to a level of approximately 1.0 mol of phosphate per mol of caldesmon77 monomer. Two-dimensional tryptic peptide mapping and phosphoamino acid analysis reveals that caldesmon77 is phosphorylated at two major sites exclusively on serine residues. Following treatment of platelets with tumor-promoting phorbol ester, caldesmon77 phosphorylation was elevated 4-fold. Tryptic peptide mapping of phosphorylated platelet caldesmon77 demonstrates that phosphorylation is most significantly enhanced on two peptides which had migration patterns identical with those of the two major phosphopeptides of bovine liver caldesmon77 phosphorylated in vitro. The results of this study indicate that protein kinase C can phosphorylate caldesmon77 in vitro and in intact platelets, suggesting a role for protein kinase C in the regulation of caldesmon77 function or localization.  相似文献   

10.
Regulating the cell surface modulates the actions of the biological cell response, derives practical applications, and is of scientific interest. On the basis of our previous study using dioleylphosphatidylethanolamine poly(ethylene glycol) with multiple units of ethyleneoxide (DOPE-PEG (n)), we demonstrated the potency of DOPE-PEG (80) as a cell surface modulator. We prepared conjugates of DOPE-PEG (80) and two antagonistic peptides (C1, SGGGCLFNLPWLCG; C26, SGGGCPFSFLPWCG), specifically designed for the inhibitory receptor of natural killer (NK) cells. We confirmed that NK cells exhibited cytotoxicity against DOPE-PEG (80)-peptides-incorporated target cells. We further investigated whether the DOPE-PEG (80)-peptides could affect the cytotoxicity of NK cells in a concentration-dependent manner. C1 peptide showed down-regulation of cytotoxicity at higher concentration, whereas C26 peptide exhibited the saturated cytotoxicity of NK cells at the same concentration. These results suggest that DOPE-PEG (80) can achieve the role of a cell surface modulator without inhibiting the action of conjugated molecules, despite their relatively small size.  相似文献   

11.
HLA-B*2702, B*2704, and B*2705 are strongly associated with spondyloarthritis, whereas B*2706 is not. Subtypes differ among each other by a few amino acid changes and bind overlapping peptide repertoires. In this study we asked whether differential subtype association with disease is related to differentially bound peptides or to altered antigenicity of shared ligands. Alloreactive CTL raised against B*2704 were analyzed for cross-reaction with B*2705, B*2702, B*2706, and mutants mimicking subtype changes. These CTL are directed against many alloantigen-bound peptides and can be used to analyze the antigenicity of HLA-B27 ligands on different subtypes. Cross-reaction of anti-B*2704 CTL with B*2705 and B*2702 correlated with overlap of their peptidic anchor motifs, suggesting that many shared ligands have similar antigenic features on these three subtypes. Moreover, the percent of anti-B*2704 CTL cross-reacting with B*2706 was only slightly lower than the overlap between the corresponding peptide repertoires, suggesting that most shared ligands have similar antigenic features on these two subtypes. Cross-reaction with B*2705 or mutants mimicking changes between B*2704 and B*2705 was donor-dependent. In contrast, cross-reaction with B*2702 or B*2706 was less variable among individuals. Conservation of antigenic properties among subtypes has implications for allorecognition, as it suggests that shared peptides may determine cross-reaction across exposed amino acid differences in the MHC molecules and that the antigenic distinctness of closely related allotypes may differ among donors. Our results also suggest that differential association of HLA-B27 subtypes with spondyloarthritis is more likely related to differentially bound peptides than to altered antigenicity of shared ligands.  相似文献   

12.
Antibody responses to the 18-kDa protein of Mycobacterium leprae have been analyzed in different strains of mice. High, intermediate, and low responder strains have been identified and these response patterns show clear linkage to genes encoded in the H-2 complex. Three peptides, residues 1-50, 51-100, and 101-148 have been synthesized, as well as a series of 20-mer peptides, which span the entire 18-kDa protein. Repeated immunization of different strains of mice with the 18-kDa protein resulted in IgG responses to epitopes found on all three synthetic peptides. Immunization of BALB/cJ and B10.BR mice, two high responder strains, with 18-kDa protein resulted in high levels of IgG antibody to epitopes found on peptides 1-20, 16-35, 31-50, 46-65, and 76-95. B10.BR mice also contained IgG that bound peptide 61-80 and BALB/cJ mice produced IgG that bound peptide 91-110. Although B10.BR mice produced IgG that bound the 50-mer peptide 101-148, this IgG was not detected by binding to peptides 91-110, 106-125, 121-140, and 131-148. Immunization of B10.BR mice with individual overlapping 20-mer peptides as Ag revealed that peptides 1-20, 16-35, 31-50, and 76-95 elicited high titers of IgG that bound both the immunizing peptide as well as 18-kDa protein. As these peptides induce antibody synthesis they must contain both B cell and T cell epitopes. By contrast, immunization of BALB/cJ mice with the same 20-mer peptides, all of which contain B cell epitopes for this strain, failed to elicit IgG responses with one exception. Peptide 91-110 induced IgG that bound peptide 91-110, but not the intact 18-kDa protein. We conclude that peptides 1-20, 16-35, 31-50, and 76-95 either lack T cell epitopes for BALB/cJ mice, or activate different T cell subpopulations in the two strains. We suggest that the induction of IgG responses to small peptide Ag is an in vivo assay of the activity of Th2 cell subpopulations.  相似文献   

13.
KIR3DL1 is a polymorphic, inhibitory NK cell receptor specific for the Bw4 epitope carried by subsets of HLA-A and HLA-B allotypes. The Bw4 epitope of HLA-B*5101 and HLA-B*1513 is determined by the NIALR sequence motif at positions 77, 80, 81, 82, and 83 in the alpha(1) helix. Mutation of these positions to the residues present in the alternative and nonfunctional Bw6 motif showed that the functional activity of the Bw4 epitopes of B*5101 and B*1513 is retained after substitution at positions 77, 80, and 81, but lost after substitution of position 83. Mutation of leucine to arginine at position 82 led to loss of function for B*5101 but not for B*1513. Further mutagenesis, in which B*1513 residues were replaced by their B*5101 counterparts, showed that polymorphisms in all three extracellular domains contribute to this functional difference. Prominent were positions 67 in the alpha(1) domain, 116 in the alpha(2) domain, and 194 in the alpha(3) domain. Lesser contributions were made by additional positions in the alpha(2) domain. These positions are not part of the Bw4 epitope and include residues shaping the B and F pockets that determine the sequence and conformation of the peptides bound by HLA class I molecules. This analysis shows how polymorphism at sites throughout the HLA class I molecule can influence the interaction of the Bw4 epitope with KIR3DL1. This influence is likely mediated by changes in the peptides bound, which alter the conformation of the Bw4 epitope.  相似文献   

14.
The human nonclassical MHC class I molecule HLA-E has recently been shown to act as a major ligand for NK cell inhibitory receptors. Using HLA-E-expressing transgenic mice, we produced a cytotoxic T cell clone that specifically recognizes the HLA-E molecule. We report here that this T cell clone lyses HLA-E-transfected RMA-S target cells sensitized with synthetic class I signal sequence nonamers. Moreover, this T cell clone lyses human EBV-infected B lymphocytes, PHA blasts, and PBL, formally demonstrating the surface expression of HLA-E/class I signal-derived peptide complex on human cells. Furthermore, these data show that HLA-E complexed with class I signal sequence-derived peptides is not only a ligand for NK cell inhibitory receptors, but can also trigger cytotoxic T cells (CTL).  相似文献   

15.
Tau is a heat-stable microtubule-associated protein which promotes tubulin polymerization. The assembly promoting region of tau was localized using synthetic peptides modeled after domains found in both human and mouse tau. The design of these synthetic peptides was based on the triple repeat motif found in mouse tau. The first peptide, Tau-(187-204), and the second peptide, Tau-(218-235), are capable of promoting the polymerization of tubulin into microtubules, at concentrations above 100 microM. Two other peptides tested, TauR and Tau-(250-267), were not able to promote the assembly of tubulin over a range of concentrations up to 800 microM. TauR is a random analog of Tau-(187-204). Although TauR is unable to promote polymerization, it can modify Tau-(187-204)-induced tubulin assembly.  相似文献   

16.
自然杀伤细胞(NK细胞)可表达两类功能相悖的识别受体,即活化受体(KAR)和抑制受体(KIR)。KIR能识别自身细胞上的MHCⅠ类分子与自身或外来肽形成2的复合物,所产生的抑制信号可阴断KAR的活化,以此抑制NK细胞的细胞毒作用。如果靶细胞失去KIR所识别的配体,NK细胞即可通过KAR对靶细胞进行攻击。本文将介绍此类受体的结构及基识别与信号转导机制的研究进展。  相似文献   

17.
The NK cell receptor protein 1 (NKR-P1) (CD161) molecules represent a family of type II transmembrane C-type lectin-like receptors expressed predominantly by NK cells. Despite sharing a common NK1.1 epitope, the mouse NKR-P1B and NKR-P1C receptors possess opposing functions in NK cell signaling. Engagement of NKR-P1C stimulates cytotoxicity of target cells, Ca2+ flux, phosphatidylinositol turnover, kinase activity, and cytokine production. In contrast, NKR-P1B engagement inhibits NK cell cytotoxicity. Nonetheless, it remains unclear how different signaling outcomes are mediated at the molecular level. Here, we demonstrate that both NKR-P1B and NKR-P1C associate with the tyrosine kinase, p56(lck). The interaction is mediated through the di-cysteine CxCP motif in the cytoplasmic domains of NKR-P1B/C. Disrupting this motif leads to abrogation of both stimulatory and inhibitory NKR-P1 signals. In addition, mutation of the consensus ITIM (LxYxxL) in NKR-P1B abolishes both its Src homology 2-containing protein tyrosine phosphatase-1 recruitment and inhibitory function. Strikingly, engagement of NKR-P1C on NK cells obtained from Lck-deficient mice failed to induce NK cytotoxicity. These results reveal a role for Lck in the initiation of NKR-P1 signals, and demonstrate a requirement for the ITIM in NKR-P1-mediated inhibition.  相似文献   

18.
Natural killer (NK) cell responses in primates are regulated in part through interactions between two highly polymorphic molecules, the killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their major histocompatibility complex (MHC) class I ligands on target cells. We previously reported that the binding of a common MHC class I molecule in the rhesus macaque, Mamu-A1*002, to the inhibitory receptor Mamu-KIR3DL05 is stabilized by certain simian immunodeficiency virus (SIV) peptides, but not by others. Here we investigated the functional implications of these interactions by testing SIV peptides bound by Mamu-A1*002 for the ability to modulate Mamu-KIR3DL05+ NK cell responses. Twenty-eight of 75 SIV peptides bound by Mamu-A1*002 suppressed the cytolytic activity of primary Mamu-KIR3DL05+ NK cells, including three immunodominant CD8+ T cell epitopes previously shown to stabilize Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. Substitutions at C-terminal positions changed inhibitory peptides into disinhibitory peptides, and vice versa, without altering binding to Mamu-A1*002. The functional effects of these peptide variants on NK cell responses also corresponded to their effects on Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. In assays with mixtures of inhibitory and disinhibitory peptides, low concentrations of inhibitory peptides dominated to suppress NK cell responses. Consistent with the inhibition of Mamu-KIR3DL05+ NK cells by viral epitopes presented by Mamu-A1*002, SIV replication was significantly higher in Mamu-A1*002+ CD4+ lymphocytes co-cultured with Mamu-KIR3DL05+ NK cells than with Mamu-KIR3DL05- NK cells. These results demonstrate that viral peptides can differentially affect NK cell responses by modulating MHC class I interactions with inhibitory KIRs, and provide a mechanism by which immunodeficiency viruses may evade NK cell responses.  相似文献   

19.
NK cell activity is controlled by the integration of signals from numerous activating and inhibitory receptors at the immunological synapse (IS). However, the importance of segregation and patterning of proteins at the NK cell IS is unknown. In this study, we report that the level of expression of HLA-C on target cells determined its supramolecular organization and segregation from ICAM-1 at the NK cell IS, as well as its capacity to inhibit NK cell cytotoxicity. At YTS NK cell synapses formed with target cells expressing low levels of HLA-C (i.e., 10(4)/cell surface), a multifocal patterning of MHC class I protein predominated, whereas for higher levels of expression (10(5)/cell surface), clusters of HLA-C were more commonly homogeneous, ring-shaped, or containing multiple exclusions. This correlation of protein density with its patterning at the IS was independent of ATP- or actin-driven processes. Importantly, ICAM-1 and HLA-C segregated only at synapses involving target cells expressing high levels of MHC protein. For peripheral blood NK clones, there were specific thresholds in the level of target cell HLA-C needed to inhibit cytotoxicity and to cause segregation of HLA-C from ICAM-1 at the synapse. Thus, the synapse organization of HLA-C, determined by its level of expression, could directly influence NK cell inhibition, e.g., by regulating the proximity of activating and inhibitory receptors. For the first time, this suggests an important function for the assembly of an inhibitory NK cell IS. More broadly, segregation of proteins at intercellular contacts could transmit information about protein expression levels between cells.  相似文献   

20.
To identify potent new antifungal agents, the Candida cell growth inhibitory activities of six lactoferrin (Lf) peptides consisting of 6-25 amino acid residues (peptide 1, FKCRRWQWRMKKLGAPSITCVRRAF lactoferricin B; peptide 2, FKCRRWQWRM; peptide 2', FKARRWQWRM; peptide 3, GAPSITCVRRAF; peptide 4, RRWQWR; and peptide 5, RWQWRM) were examined. Of these, peptide 2 strongly suppressed the multiplication of Candida cells, but other peptides showed only weak activities. In two strains of C. albicans, the minimum inhibitory concentration 100 of peptide 2 (17.3+/-2.2 microM and 17.5+/-2.4 microM) was close to that of miconazole (13.0+/-1.7 microM and 13.1+/-1.6 microM) but markedly different from that of amphotericin B (0.52+/-0.09 microM and 0.56+/-0.11 microM). The suppression of Candida cell growth was additively increased by a combination of peptide 2 with amphotericin B and miconazole. Peptides 1, 3, 4 and 5 and Lf suppressed iron uptake by Candida cells, inversely correlated with their Candida cell growth inhibition activities. However, iron uptake was not inhibited by peptide 2. In addition, peptide 2 upregulated Candida cell killing activity of polymorphonuclear leukocytes (PMN) increasing their superoxide generation, protein kinase C activity, p38 MAPK activity and the expression of p47phox. These results indicated that the main antimicrobial activity of the Lf peptides is dependent on the N-terminal half of Lf and that the PMN upregulatory activity of peptide 2 and additive function of peptide 2 with antifungal drugs are useful for prophylaxis and control of candidiasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号