首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Zhang M  Zeng CQ  Morris AP  Estes MK 《Journal of virology》2000,74(24):11663-11670
Previous studies have shown that the nonstructural glycoprotein NSP4 plays a role in rotavirus pathogenesis by functioning as an enterotoxin. One prediction of the mechanism of action of this enterotoxin was that it is secreted from virus-infected cells. In this study, the media of cultured (i) insect cells infected with a recombinant baculovirus expressing NSP4, (ii) monkey kidney (MA104) cells infected with the simian (SA11) or porcine attenuated (OSU-a) rotavirus, and (iii) human intestinal (HT29) cells infected with SA11 were examined to determine if NSP4 was detectable. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis-Western blotting, immunoprecipitation and N-terminal amino acid sequencing identified, in the early media from virus-infected cells, a secreted, cleavage product of NSP4 with an apparent molecular weight of 7,000 that represented amino acids 112 to 175 (NSP4 aa112-175). The secretion of NSP4 aa112-175 was not affected by treatment of cells with brefeldin A but was abolished by treatment with nocodazole and cytochalasin D, indicating that secretion of this protein occurs via a nonclassical, Golgi apparatus-independent mechanism that utilizes the microtubule and actin microfilament network. A partial gene fragment coding for NSP4 aa112-175 was cloned and expressed using the baculovirus-insect cell system. Purified NSP4 aa112-175 increased intracellular calcium mobilization in intestinal cells when added exogenously, and in insect cells when expressed endogenously, similarly to full-length NSP4. NSP4 aa112-175 caused diarrhea in neonatal mice, as did full-length NSP4. These results indicate that NSP4 aa112-175 is a functional NSP4 enterotoxin peptide secreted from rotavirus-infected cells.  相似文献   

2.
人轮状病毒NSP4基因变异与功能关系的初步研究   总被引:6,自引:0,他引:6  
在比较我国人A组轮状病毒一般腹泻患者分离株和重症患者分离株非结构蛋白(NSP)4 cDNA序列时发现,两者在可能与致病性有关的区域(aa131~146)内存在着显著的差异.为进一步探讨这种变异是否与毒力改变有关,利用杆状病毒表达载体在昆虫细胞Sf9中表达两种毒株的NSP4,通过激光扫描共聚焦显微镜初步观察了它对细胞内钙离子浓度的影响.结果表明:两种来源的NSP4均可使细胞内钙离子浓度明显升高,在48h时大致升高3.1~3.4倍,96h时升高5.6~5.8倍,但两种毒株之间的差别并不明显.研究证实,人轮状病毒NSP4与以往报道的动物轮状病毒NSP4一样,可以引起细胞内钙离子增高,即可能与病毒的致病性有关.但重症腹泻毒株SZ1 NSP4第131~146位氨基酸位点出现的变异并未提高其毒力.轮状病毒的毒力改变可能与其它因素有关.  相似文献   

3.
Rotaviruses are major pathogens causing life-threatening dehydrating gastroenteritis in children and animals. One of the nonstructural proteins, NSP4 (encoded by gene 10), is a transmembrane, endoplasmic reticulum-specific glycoprotein. Recently, our laboratory has shown that NSP4 causes diarrhea in 6- to 10-day-old mice by functioning as an enterotoxin. To confirm the role of NSP4 in rotavirus pathogenesis, we sequenced gene 10 from two pairs of virulent and attenuated porcine rotaviruses, the OSU and Gottfried strains. Comparisons of the NSP4 sequences from these two pairs of rotaviruses suggested that structural changes between amino acids (aa) 131 and 140 are important in pathogenesis. We next expressed the cloned gene 10 from the OSU virulent (OSU-v) and OSU attenuated (OSU-a) viruses by using the baculovirus expression system and compared the biological activities of the purified proteins. NSP4 from OSU-v virus increased intracellular calcium levels over 10-fold in intestinal cells when added exogenously and 6-fold in insect cells when expressed endogenously, whereas NSP4 from OSU-a virus had little effect. NSP4 from OSU-v caused diarrhea in 13 of 23 neonatal mice, while NSP4 from OSU-a caused disease in only 4 of 25 mice (P < 0.01). These results suggest that avirulence is associated with mutations in NSP4. Results from site-directed mutational analyses showed that mutated OSU-v NSP4 with deletion or substitutions in the region of aa 131 to 140 lost its ability to increase intracellular calcium levels and to induce diarrhea in neonatal mice, confirming the importance of amino acid changes from OSU-v NSP4 to OSU-a NSP4 in the alteration of virus virulence.  相似文献   

4.
The rotavirus nonstructural NSP4 protein, a transmembrane endoplasmic reticulum-specific glycoprotein, has been described as the first viral enterotoxin. Purified NSP4 or a peptide corresponding to NSP4 residues 114-135 induces diarrhea in young mice. NSP4 has a membrane-destabilizing activity and causes an increase in intracellular calcium levels and chloride secretion by a calcium-dependent signalling pathway in eucaryotic cells. In this study, four recombinant baculoviruses were generated expressing the rotavirus NSP4 glycoprotein from the human strains Wa and Ito, the porcine strain OSU, and the simian strain SA11, which belong to two different NSP4 genotypes, A and B. The recombinant glycoproteins, expressed as polyhistidine-tagged molecules, were analyzed by Western blotting and immunoprecipitation. Newborn mice responded with diarrhea after inoculation with each of the recombinant NSP4 proteins.  相似文献   

5.
Rotavirus infection of cells in culture induces major changes in Ca(2+) homeostasis. These changes include increases in plasma membrane Ca(2+) permeability, cytosolic Ca(2+) concentration, and total cell Ca(2+) content and a reduction in the amount of Ca(2+) released from intracellular pools sensitive to agonists. Various lines of evidence suggest that the nonstructural glycoprotein NSP4 and possibly the major outer capsid glycoprotein VP7 are responsible for these effects. In order to evaluate the functional roles of NSP4 and other rotavirus proteins in the changes in Ca(2+) homeostasis observed in infected cells, the expressions of NSP4, VP7, and VP4 were silenced using the short interfering RNA (siRNA) technique. The transfection of specific siRNAs resulted in a strong and specific reduction of the expression of NSP4, VP7, and VP4 and decreased the yield of new viral progeny by more than 90%. Using fura-2 loaded cells, we observed that knocking down the expression of NSP4 totally prevented the increase in Ca(2+) permeability of the plasma membrane and cytosolic Ca(2+) concentration measured in infected cells. A reduction in the levels of VP7 expression partially reduced the effect of infection on plasma membrane Ca(2+) permeability and Ca(2+) pools released by agonist (ATP). In addition, the increase of total Ca(2+) content (as measured by (45)Ca(2+) uptake) observed in infected cells was reduced to the levels in mock-infected cells when NSP4 and VP7 were silenced. Finally, when the expression of VP4 was silenced, none of the disturbances of Ca(2+) homeostasis caused by rotaviruses in infected cells were affected. These data altogether indicate that NSP4 is the main protein responsible for the changes in Ca(2+) homeostasis observed in rotavirus-infected cultured cells. Nevertheless, VP7 may contribute to these effects.  相似文献   

6.
We previously reported that expression of rotavirus nonstructural glycoprotein NSP4 is responsible for an increase in cytosolic free Ca2+ concentration ([Ca2+]i) in Spodoptera frugiperda (Sf9) insect cells (P. Tian, Y. Hu, W. P. Schilling, D. A. Lindsay, J. Eiden, and M. K. Estes, J. Virol. 68:251-257, 1994). The purpose of the present study was to determine the mechanism by which NSP4 causes an increase in [Ca2+]i by measuring the permeability of the cytoplasmic and endoplasmic reticulum (ER) membranes in recombinant-baculovirus-infected Sf9 cells. No obvious change in plasmalemma permeability to divalent cations was observed in cells expressing NSP4 compared with that in cells expressing another rotaviral glycoprotein (VP7) when the influx of Ba2+, a Ca2+ surrogate, was monitored. The basal Ca2+ permeability of the internal Ca2+ store was evaluated by measuring the release of Ca2+ induced by ionomycin, a Ca2+ ionophore, or thapsigargin, an inhibitor of the ER Ca(2+)-ATPase pump, following suspension of the cells in Ca(2+)-free extracellular buffer. Releasable Ca2+ decreased with time to a greater extent in cells expressing NSP4 compared with that in cells expressing VP7, suggesting that NSP4 increases the basal Ca2+ permeability of the ER membrane. To determine the possible mechanism by which NSP4 increases ER permeability, purified NSP4 protein or a 22-amino-acid synthetic peptide consisting of residues 114 to 135 (NSP4(114-135) was added exogenously to noninfected Sf9 cells during measurement of [Ca2+]i. Both NSP4 and the NSP4(114-135 peptide produced a time-dependent increase in [Ca2+]i that was attenuated by prior inhibition of phospholipase C with U-73122. Pretreatment of the cells with thapsigargin completely blocked the increase in [Ca2+]i produced by NSP4(114-135, but the peptide only partially reduced the change in [Ca2+]i produced by thapsigargin. No changes in [Ca2+]i were seen in cells treated with control peptides. These results suggest that (i) exogenous NSP4 increases [Ca2+]i through the activation of phospholipase C, (ii) Ca2+ release by exogenous NSP4 is from a store that is a subset of the thapsigargin-sensitive compartment, and (iii) amino acid residues 114 to 135 of NSP4 are sufficient for this activity. In contrast to exogenous NSP4, the mechanism by which endogenously expressed NSP4 increases [Ca2+]1 appears to be unrelated to phospholipase C, since no effect of U-73122 was seen on the elevated [Ca2+]1 in cells expressing NSP4 and exogenously applied NSP4(114-135) caused a further increase in [Ca2+]1 in cells expressing NSP4 protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
This report describes novel baculovirus vectors designed to express mammalian beta1,4-galactosyltransferase and alpha2,6-sialyltransferase genes at early times after infection. Sf9 cells infected with these viral vectors, unlike cells infected with a wild-type baculovirus, produced a sialylated viral glycoprotein during the late phase of infection. Thus, the two mammalian glycosyltransferases encoded by these viral vectors are necessary and sufficient for sialylation of a foreign glycoprotein in insect cells under the conditions used in this study. While some of the new baculovirus vectors described in this study produced less, one produced wild-type levels of infectious budded virus progeny.  相似文献   

8.
Summary The baculovirus P35 protein is a caspase inhibitor that prevents the induction of apoptosis during infection of Sf21 cells byAutographa californica multicapsid nucleopolyhedrovirus (AcMNPV). P35 inhibits the induction of apoptosis in a broad range of cells and circumstances. In this study, we examined the effects of constitutive cellular P35 expression on the response of cells to stressful culture conditions and on protein production in AcMNPV infected cells. Sf9 cell lines expressing AcMNPV P35 or an epitope-tagged P35 protein were generated using a double selection technique, involving selection in the antibiotic G418, followed by a second round of selection by exposure to actinomycin D, a potent inducer of apoptosis in Sf9 cells. Clonal cell lines were generated and examined for (1) resistance to actinomycin D induced apoptosis, (2) resistance to nutrient deprivation, and (3) baculovirus expression of intracellular and secreted proteins. When compared with Sf9 cells, two P35-expressing cell lines (Sf9P35AcV5-1 and Sf9P35AcV5-3) showed increased resistance to actinomycin D-induced apoptosis and a profound resistance to nutrient deprivation. When these cell lines were infected with a recombinant baculovirus expressing a secreted glycoprotein (secreted alkaline phosphatase), expression of the glycoprotein from these cells exceeded that from the parental Sf9 cells and was comparable to expression levels obtained from Tn5B1-4 cells, the best available cell line for high-level expression. Increased levels of protein secretion in Sf9P35AcV5-1 and Sf9P35AcV5-3 cells appear to result from a prolonged infection cycle and accumulation of the secreted glycoprotein.  相似文献   

9.
Bugarcic A  Taylor JA 《Journal of virology》2006,80(24):12343-12349
NSP4, a nonstructural glycoprotein encoded by rotavirus, is involved in the morphogenesis of virus particles in the endoplasmic reticulum of infected cells. NSP4 is also implicated in the pathophysiology of rotavirus-induced diarrhea by acting as an enterotoxin. To mediate enterotoxic effects in vivo, NSP4 must be secreted or released from rotavirus-infected cells in a soluble form; however, previous studies have indicated that NSP4 is a transmembrane glycoprotein localized within endomembrane compartments in infected cells. In this study, we examined the fate of NSP4 synthesized in Caco-2 cells infected with bovine rotavirus. Our studies reveal that NSP4 is actively secreted into the culture medium, preferentially from the infected-cell apical surface. The secretion of NSP4 is dramatically inhibited by brefeldin A and monensin, suggesting that a Golgi-dependent pathway is involved in release of the protein. In agreement with the proposed involvement of the Golgi apparatus during secretion, secreted NSP4 appears to undergo additional posttranslational modification compared to its cell-associated counterpart and is partially resistant to deglycosylation by endoglycosidase H. Our experiments identify a novel, soluble form of NSP4 secreted from virus-infected cells with the potential to carry out the enterotoxigenic role previously attributed to recombinant forms of the protein.  相似文献   

10.
This paper describes the setup and the use of a flow cytometric method for monitoring Sf9 insect cell infection by a recombinant baculovirus expressing the human alpha1,3/4 fucosyltransferase Fuc-TIII. Using side scattered light coupled to green fluorescence detection after immunolabeling of the recombinant protein, this method made it possible to monitor baculovirus infection of Sf9 cells grown in batch cultures and infected at different cell densities and multiplicities of infection. The method was able to precisely assess the extent of infection of the insect cells from 60 h postinfection. In asynchronously infected Sf9 cell cultures, the two-step infection process (primary and secondary infection) was well-characterized using this technique. Finally, a reduced sensitivity to baculovirus infection was observed for cells infected at the end of the growth phase compared to the cells infected during exponential growth phase.  相似文献   

11.
对我国轮状病毒流行株NSP4基因变异特点的分析表明,NSP4基因主要可分为Wa组和Kun组,在Wa组内可形成三个亚组,形成了4种NSP4基因型。为了进一步阐明人轮状病毒流行株NSP4基因变异与其致病性变化是否存在联系,我们首先利用杆状病毒载体对NSP4蛋白进行表达,获得了对应4种不同NSP4基因型的重组杆状病毒rvBac97B6,rvBac97S34,rvBac97S36和rvBac97SZ8。用这些病毒感染Sf9细胞后,检测细胞内Ca2 浓度的变化,发现与野生型杆状病毒感染细胞相比,重组病毒感染细胞内的Ca2 浓度显著升高,但各个重组病毒之间无显著性差异。在此基础上,我们进一步在E.coli中分别表达纯化了代表Wa和Kun基因分组的97S34和97SZ8流行株的NSP4。分别用纯化的重组NSP4蛋白攻击乳鼠后,发现不同基因型的NSP4蛋白的致腹泻活性没有明显差异,这种作用可被NSP4抗体拮抗,但这种拮抗作用存在基因型特异性。上述结果表明人轮状病毒流行株NSP4氨基酸序列间的变异并没有使其钙调节及致腹泻能力产生改变,在致腹泻作用中发挥关键作用(或决定性作用)的氨基酸位点在不同NSP4基因型间可能是相对保守的。针对NSP4抗体的有效性也为新型轮状病毒疫苗和药物研究提供了线索。  相似文献   

12.
将汉坦病毒H8205株G1P基因的保守序列(约1000bp)作为目的基因插入到BactoBac杆状病毒表达系统的pFastBacHTb供体质粒中,利用Tn7转座子同BacmidDNA同源重组,获得了含目的基因片段的重组杆状病毒DNA,并利用其转染Sf9昆虫细胞,72h后收集细胞悬液,再用该悬液侵染Sf9昆虫细胞,48h后收获病毒.采用IFA分析收获的产物,观察到了特异性的荧光,并且采用SDSPAGE和Western印迹也获得了与预期一致的结果.证明感染后的Sf9昆虫细胞所表达的蛋白中含有能与抗汉坦病毒H8205株多克隆抗体特异性结合目的蛋白.研究表明,采用杆状病毒表达系统可以成功表达出汉坦病毒H8205株包膜糖蛋白G1基因片段,为开发适合的以G1P为抗原的汉坦病毒诊断试剂进行了前期的探索.  相似文献   

13.
Abstract

Human CD23 (low affinity receptor for IgE) has been expressed in insect cells (Sf9) using the baculovirus expression system and the baculovirus transfer vector pAc373. Insect cells infected with a recombinant baculovirus coding for CD23 synthesized a polypeptide not found in wild-type infected insect cells that had antigenic properties similar to natural CD23 produced in RPMI 8866 cells. Surface expression of recombinant CD23 was demonstrated by its ability to bind IgE. Recombinant CD23 expressed in insect cells had a slightly lower molecular weight (4 3 kDa) than that of natural CD23 (4 5 kDa) from RPMI 8866 cells as detected by SDS-PAGE followed by Western-blotting. Affinity-purified recombinant CD23 from in-fected insect cells showed B-cell growth promoting activity. These observations demonstrate for the first time that biologically active recombinant CD23 can be produced by the baculovirus expression system, thus providing a useful source of recombinant material to elucidate the biological functions of CD23.  相似文献   

14.
15.
Rotavirus is the most important cause of viral gastroenteritis and dehydrating diarrhea in young children. Rotavirus nonstructural protein 4 (NSP4) is an enterotoxin that was identified as an important agent in symptomatic rotavirus infection. To identify cellular proteins that interact with NSP4, a two-hybrid technique with Saccharomyces cerevisiae was used. NSP4 cDNA, derived from the human rotavirus strain Wa, was cloned into the yeast shuttle vector pGBKT7. An intestinal cDNA library derived from Caco-2 cells cloned into the yeast shuttle vector pGAD10 was screened for proteins that interact with NSP4. Protein interactions were confirmed in vivo by coimmunoprecipitation and immunohistochemical colocalization. After two-hybrid library screening, we repeatedly isolated cDNAs encoding the extracellular matrix (ECM) protein laminin-beta3 (amino acids [aa] 274 to 878) and a cDNA encoding the ECM protein fibronectin (aa 1755 to 1884). Using deletion mutants of NSP4, we mapped the region of interaction with the ECM proteins between aa 87 and 145. Deletion analysis of laminin-beta3 indicated that the region comprising aa 726 to 875 of laminin-beta3 interacts with NSP4. Interaction of NSP4 with either laminin-beta3 or fibronectin was confirmed by coimmunoprecipitation. NSP4 was present in infected enterocytes and in the basement membrane (BM) of infected neonatal mice and colocalized with laminin-beta3, indicating a physiological interaction. In conclusion, two-hybrid screening with NSP4 yielded two potential target proteins, laminin-beta3 and fibronectin, interacting with the enterotoxin NSP4. The release of NSP4 from the basal side of infected epithelial cells and the subsequent binding to ECM proteins localized at the BM may signify a new mechanism by which rotavirus disease is established.  相似文献   

16.
庚型肝炎病毒包膜糖蛋白E2基因在昆虫细胞中的表达   总被引:2,自引:0,他引:2  
用PCR扩增出HGVE2全基因,克隆进杆状病毒表达载体pFASTBACHTa中,构建成重组转座载体pFASTBACE2,转化DH10BAC大肠杆菌感受态细胞,筛选阳性菌落,抽提大分子质粒DNA,获得含HGVE2基因的重组杆状病毒穿梭载体,转染昆虫草地夜蛾Sf9细胞,出现细胞病变后,收集含有重组病毒颗粒的培养上清,重新感染草地夜蛾Sf9单层细胞及甜菜夜蛾幼虫,分别收集Sf9细胞和甜菜夜蛾幼虫体内的血淋巴细胞,进行12%SDS聚丙烯酰胺凝胶电泳,可见表达的融合蛋白带,经亲和层析进行蛋白纯化,用ELISA方法检测各类血清标本,初步研究HGVE2糖蛋白的抗原性  相似文献   

17.
The N-glycans of recombinant glycoproteins expressed in insect cells mainly contain high mannose or tri-mannose structures, which are truncated forms of the sialylated N-glycans found in mammalian cells. Because asialylated glycoproteins have a shorter half-life in blood circulation, we investigated if sialylated therapeutic glycoprotein can be produced from insect cells by enhancing the N-glycosylation machinery of the cells. We co-expressed in two insect cell lines, Sf9 and Ea4, the human alpha1-antitrypsin (halpha1AT) protein with a series of key glycosyltransferases, including GlcNAc transferase II (GnT2), beta1,4-galactosyltransferase (beta14GT), and alpha2,6-sialyltransferase (alpha26ST) by a single recombinant baculovirus. We demonstrated that the enhancement of N-glycosylation is cell type-dependent and is more efficient in Ea4 than Sf9 cells. Glycan analysis indicated that sialylated halpha1AT proteins were produced in Ea4 insect cells expressing the above-mentioned exogenous glycosyltransferases. Therefore, our expression strategy may simplify the production of humanized therapeutic glycoproteins by improving the N-glycosylation pathway in specific insect cells, with an ensemble of exogenous glycosyltransferases in a single recombinant baculovirus.  相似文献   

18.
通过逆转录-聚合酶链反应(RT-PCR)从丙肝患者的血清中分离出编码完整HCV核心蛋白(C区)的cDNA片段,并将其克隆到杆状病毒转移质粒中。重组转移质粒DNA与线性的杆状病毒DNA共转染Sf9昆虫细胞,经蚀斑筛选获得了带编码全部核心蛋白基因的重组杆状病毒。重组病毒感染细胞后表达HCV核心蛋白,其分子量的为20kD。免疫印染和酶联免疫实验表明,此重组蛋白能被人HCV阳性血清所识别。动物实验表明此重组蛋白能诱导小鼠产生特异性抗体。  相似文献   

19.
Rotavirus is a nonenveloped virus with a three-layered capsid. The inner layer, made of VP2, encloses the genomic RNA and two minor proteins, VP1 and VP3, with which it forms the viral core. Core assembly is coupled with RNA viral replication and takes place in definite cellular structures termed viroplasms. Replication and encapsidation mechanisms are still not fully understood, and little information is available about the intermolecular interactions that may exist among the viroplasmic proteins. NSP2 and NSP5 are two nonstructural viroplasmic proteins that have been shown to interact with each other. They have also been found to be associated with precore replication intermediates that are precursors of the viral core. In this study, we show that NSP5 interacts with VP2 in infected cells. This interaction was demonstrated with recombinant proteins expressed from baculovirus recombinants or in bacterial systems. NSP5-VP2 interaction also affects the stability of VP6 bound to VP2 assemblies. The data presented showed evidence, for the first time, of an interaction between VP2 and a nonstructural rotavirus protein. Published data and the interaction demonstrated here suggest a possible role for NSP5 as an adapter between NSP2 and the replication complex VP2-VP1-VP3 in core assembly and RNA encapsidation, modulating the role of NSP2 as a molecular motor involved in the packaging of viral mRNA.  相似文献   

20.
Rat choline acetyltransferase (ChAT) has been expressed at a high level in Spodoptera frugiperda Sf9 cells using a baculovirus expression system. A cDNA containing the coding sequence for ChAT was inserted into the transfer vector pAcYM1 to yield the recombinant vector pAcYM1/ChAT. Sf9 cells were then coinfected with pAcYM1/ChAT and the wild-type Autographa californica virus. One recombinant virus particle, containing the cDNA for ChAT, was selected that expressed a protein of 68.5 kDa. Forty hours after infection of cells with the recombinant virus, the specific activity of ChAT in the cytosol was 190 nmol of acetylcholine/min/mg of protein, accounting for approximately 24% of the cell cytosolic proteins as being ChAT. The apparent Km values of the enzyme for choline and acetyl-CoA were 299 and 221 microM, respectively, whereas the respective Vmax values were 10.6 and 11.4 mumol of acetylcholine/min/mg of protein. In addition, analysis of the protein revealed that ChAT is phosphorylated in Sf9 cells. About 0.5 mg of ChAT was obtained from a one-step purification procedure starting with 10(8) infected Sf9 cells. Addition of choline to the incubation medium led to accumulation of high amounts of acetylcholine in the cytosol of the infected cells. The neurotransmitter was not released by Sf9 cells in response to membrane depolarization or on ionophore-mediated calcium entry. Some acetylcholine, which most likely originated from cell death inherent to viral infection, accumulated in the culture medium. The infected insect cells, which synthesize and store neurotransmitter, provide a new and convenient model for analyzing synaptic transmission at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号