共查询到20条相似文献,搜索用时 15 毫秒
1.
Mtwisha Linda Brandt Wolf McCready Sue Lindsey George G. 《Plant molecular biology》1998,37(3):513-521
LEA group I, II and III antibodies all recognised soluble proteins present in an extract of yeast (Saccharomyces cerevisiae). The smaller protein of the two recognised by the group I antibody displayed identical migration on SDS-PAGE to the pea seed LEA group I protein against which the antibody was raised. However, the antibody failed to recognise the predominant protein present after heating the extract at 80 °C for 10 min. This predominant protein, which also displayed identical migration on SDS-PAGE, was purified from the supernatant of the extract heated at 80 °C for 10 min. Peptide sequencing after CNBr cleavage identified the isolated protein as the heat shock protein HSP 12. Despite a previous report that HSP 12 is a heat shock protein, HSP 12 was found to increase in yeast grown at 37 °C compared with growth at 30 °C . However, increased amounts of HSP 12 were present in yeast after entry into stationary phase; this was enhanced by growth in the osmolytes NaCl and mannitol. 相似文献
2.
3.
Chen C Wanduragala S Becker DF Dickman MB 《Applied and environmental microbiology》2006,72(6):4001-4006
Exogenous proline can protect cells of Saccharomyces cerevisiae from oxidative stress. We altered intracellular proline levels by overexpressing the proline dehydrogenase gene (PUT1) of S. cerevisiae. Put1p performs the first enzymatic step of proline degradation in S. cerevisiae. Overexpression of Put1p results in low proline levels and hypersensitivity to oxidants, such as hydrogen peroxide and paraquat. A put1-disrupted yeast mutant deficient in Put1p activity has increased protection from oxidative stress and increased proline levels. Following a conditional life/death screen in yeast, we identified a tomato (Lycopersicon esculentum) gene encoding a QM-like protein (tQM) and found that stable expression of tQM in the Put1p-overexpressing strain conferred protection against oxidative damage from H2O2, paraquat, and heat. This protection was correlated with reactive oxygen species (ROS) reduction and increased proline accumulation. A yeast two-hybrid system assay was used to show that tQM physically interacts with Put1p in yeast, suggesting that tQM is directly involved in modulating proline levels. tQM also can rescue yeast from the lethality mediated by the mammalian proapoptotic protein Bax, through the inhibition of ROS generation. Our results suggest that tQM is a component of various stress response pathways and may function in proline-mediated stress tolerance in plants. 相似文献
4.
The effect of HSP12 deletion on the response of yeast to desiccation was investigated. The Deltahsp12 strain was found to be more desiccation tolerant than the wild-type strain. Furthermore, the increased intracellular trehalose levels in the Deltahsp12 strain suggested that this strain compensated for the lack of Hsp12p synthesis by increasing trehalose synthesis, which facilitated increased desiccation tolerance. Results obtained from flow cytometry using the membrane exclusion dye propidium iodide suggested that Hsp12p helped maintain plasma membrane integrity during desiccation. Analysis of the oxidative loads experienced by the wild-type and Deltahsp12 strains showed that during mid-exponential phase, the increased trehalose levels present in the Deltahsp12 cells resulted in increased protection of these cells against reactive oxygen species compared with wild-type cells. During stationary phase, lower levels of reactive oxygen species reduction by reduced glutathione was enhanced in the wild-type strain, which displayed lower intracellular trehalose concentrations. Comparison of the tolerance of the wild-type and Deltahsp12 strains with applied oxidative stress showed that the Deltahsp12 strain was more tolerant to exogenously applied H2O2, which we attributed to the higher intracellular trehalose concentration. Flow cytometry demonstrated that Hsp12p played a role in maintaining plasma membrane integrity during applied oxidative stress. 相似文献
5.
TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. 总被引:20,自引:10,他引:20
下载免费PDF全文

We identified a 180-kilodalton plasma membrane protein in Saccharomyces cerevisiae required for high-affinity transport (uptake) of potassium. The gene that encodes this putative potassium transporter (TRK1) was cloned by its ability to relieve the potassium transport defect in trk1 cells. TRK1 encodes a protein 1,235 amino acids long that contains 12 potential membrane-spanning domains. Our results demonstrate the physical and functional independence of the yeast potassium and proton transport systems. TRK1 is nonessential in S. cerevisiae and maps to a locus unlinked to PMA1, the gene that encodes the plasma membrane ATPase. Haploid cells that contain a null allele of TRK1 (trk1 delta) rely on a low-affinity transporter for potassium uptake and, under certain conditions, exhibit energy-dependent loss of potassium, directly exposing the activity of a transporter responsible for the efflux of this ion. 相似文献
6.
Itooka Koki Takahashi Kazuo Kimata Yukio Izawa Shingo 《Applied microbiology and biotechnology》2018,102(5):2279-2288
Applied Microbiology and Biotechnology - Cold atmospheric pressure plasma (CAP) does not cause thermal damage or generate toxic residues; hence, it is projected as an alternative agent for... 相似文献
7.
The isolation of Saccharomyces cerevisiae plasma membrane was carried out after hypotonic lysis of yeast protoplasts treated with concanavalin A by two independent methods: a, at low speed centrifugation and b, at high speed centrifugation in a density gradient. Several techniques (electron microscopic, enzymic, tagging, etc.) were used to ascertain the degree of purification of the plasma membranes obtained. The low speed centrifugation technique as compared with the other method gave a higher yield of plasma membranes with a similar degree of purification. Analysis of the yeast plasma membrane of normally growing cells by sodium dodecyl sulphate polyacrylamide gel electrophoresis showed at least 25 polypeptide bands. Twelve glycoprotein bands were also found, and their apparent molecular weights were determined. Treatment of the protoplasts with cycloheximide resulted in a significant decrease in the carbohydrate and protein content of the plasma membrane. The electrophoretic pattern of the plasma membrane of cycloheximide-treated cells showed a redistribution of the relative amounts of each protein band and a drastic reduction in the number of Schiff-positive bands. The isoelectric point of the most abundant proteins was low (pI 4) or lower than expected from previous data. A large part of the mannosyl transferase activity found in the cell (80%) was associated with the internal membranes, the remaining activity (20%) was located in the plasma membrane preparation. Part of the mannosyl transferase activity of the cells is located at the plasma membrane surface. Invertase (an external mannoprotein) is found in both the plasma and internal membranes, and as the specific activity dropped significantly following cycloheximide treatment of the cells, it is suggested that these membranes systems are the structures for the glycosylation of a precursor invertase and its subsequent release into the periplasmic space. Other transferase found in the plasma membrane preparation transfers glucose residues from UDPglucose to a poly(alpha(1 leads to 4) polymer identified as glycogen. 相似文献
8.
The Saccharomyces cerevisiae HSP31 (YDR533c) gene encodes a protein that belongs to the DJ-1/PfpI family and its function is unknown. Homologs to Hsp31p polypeptide can be found in organisms from all systematic groups of eukaryotes and prokaryotes, and the functions of the vast majority of them are also hypothetical. One of the homologs is human protein DJ-1. Various amino acid substitutions within this protein correlate with early onset hereditary Parkinson's disease. The deletion of the HSP31 gene displays no apparent phenotype under standard growth conditions, but a thorough functional analysis of S. cerevisiae revealed that its absence makes the cells sensitive to a subset of reactive oxygen species (ROS) generators. HSP31 is induced under conditions of oxidative stress in a YAP1-dependent manner. Similar to other stress response genes, it is also induced in the postdiauxic phase of growth and this induction is YAP1-independent. The patterns of sensitivities to various ROS generators of the hsp31Delta strain and the strain with the deletion of SOD1, another gene defending the cell against ROS, are different. We postulate that Hsp31p protects the cell against oxidative stress and complements other stress protection systems within the cell. 相似文献
9.
The higher resistance of stationary-phase Saccharomyces cerevisiae to H2O2 when compared with exponential phase is well characterized, but the molecular mechanisms underlying it remain mostly unknown. By applying the steady-state H2O2-delivery model, we show that (a) cellular permeability to H2O2 is five times lower in stationary--than in exponential phase; (b) cell survival to H2O2 correlates with H2O2 cellular gradients for a variety of cells; and, (c) cells in stationary phase are predicted to be more susceptible to intracellular H2O2 than in exponential phase. In conclusion, limiting H2O2 diffusion into cells is a key protective mechanism against extracellular H2O2. 相似文献
10.
11.
Reduced plasma membrane permeability in a multiple cross-resistant strain of Saccharomyces cerevisiae. 总被引:5,自引:0,他引:5
下载免费PDF全文

Single nuclear gene inheritance was shown to be responsible for increased resistance to: eight diverse inhibitors of mitochondrial function (antimycin, carbonylcyanide-m-chlorophenylhydrazone, chloramphenicol, oligomycin, tetracycline, triethyltin bromide, triphenylmethylphosphonium bromide and triton-X-165); and an inhibitor of cytoplasmic protein synthesis (cycloheximide). Continuous monitoring of oxygen uptake during respiratory adaptation showed that anerobic pretreatment of resistant cells sensitized respiratory adaptation to chloramphenicol and antimycin. However, since a depression of mitochondrial function by catabolite repression did not result in sensitization to antimycin, alteration of the mitochondrial membrane does not appear to be responsible for resistance to mitochondrial inhibition. Alteration of cellular binding sites was not responsible for resistance since in vitro mitochondrial protein synthesis was sensitive to chloramphenicol and in vitro mitochondrial respiration was sensitive to oligomycin, carbonylcyanide-m-chlorophenylhydrazone, and antimycin. Autoradiography of an ethylacetate-ethanol extract of [14C]chloramphenicol-treated resistant cells indicated that resistance was not due to enzymatic modification of inhibitors. The maintenance of an antimycin-resistant respiration by protoplasts of resistant cells ruled out the involvement of the cell wall in cellular resistance. The reduced transport of [14C]chloramphenicol by resistant cells (1% of normal cells) indicated that a single nuclear gene mutation can alter the permeability of the plasma membrane to many diverse inhibitors. 相似文献
12.
Karreman RJ Dague E Gaboriaud F Quilès F Duval JF Lindsey GG 《Biochimica et biophysica acta》2007,1774(1):131-137
The yeast S. cerevisiae cell wall comprising a 10 nm thick layer of polysaccharides, predominantly beta(1,3)-glucan and proteins, is the interface between the cell and the neighbouring environment. As such it is not a static entity but rather one that is dynamically remodelled in response to changes in the environmental conditions. We have recently proposed from studies using yeast cells lacking the gene encoding Hsp12p (Deltahsp12 yeast) and from incorporation of Hsp12p into agarose, used as a model system for the beta-glucan layer of the cell wall, that the hydrophilic stress response cell wall protein Hsp12p acts as a cell wall plasticizer. In this report we have used force spectroscopy to confirm that Deltahsp12 yeast are indeed less flexible than the wild type strain. The spring constant of the cell wall of Deltahsp12 yeast, kcw was determined to be 72+/-3 mN m-1 as compared to 17+/-5 mN m-1 obtained for the wild type strain. A similar result was found on the basis of a quantitative analysis of the electrophoretic mobilities measured for the two yeast strains. Those indicated that the hydrodynamic permeability quantified through the softness parameter of the external layer of Deltahsp12 cells was smaller than the one of wild type cells. We proposed from surface infrared spectroscopy measurements that yeast compensate for the lack of Hsp12p by reducing the carbohydrate/proteins ratio of the cell wall or increasing the cell wall chitin content. 相似文献
13.
Fragility of plasma membranes in Saccharomyces cerevisiae enriched with different sterols. 总被引:2,自引:5,他引:2
下载免费PDF全文

Saccharomyces cerevisiae NCYC 366, grown under strictly anaerobic conditions to induce requirements for an unsaturated fatty acid (supplied by Tween 80) and a sterol, contained free sterol fractions enriched to the extent of 67 to 93% with the exogenously supplied sterol (campesterol, cholesterol, 7-dehydrocholesterol, 22, 23-dihydrobrassicasterol, beta-sitosterol, or stigmasterol). Cells enriched in any one of the sterols did not differ in volume, growth rate, contents of free sterol, esters and phospholipids, or phospholipid composition. Cholesterol-enriched cells contained about 2% more lipid than cells enriched in any of the other sterols, which was largely accounted for by increased contents of triacylglycerols and, to a lesser extent, esterified sterols. Phospholipids were enriched to the extent of about 52 to 63% with C18:1 residues. Cells enriched in ergosterol or stigmasterol were slightly less susceptible to the action of a wall-digesting basidiomycete glucanase than cells enriched with any one of the other sterols. The capacity of the plasma membrane to resist stretching, as indicated by the stability and volume of spheroplasts suspended in hypotonic solutions of buffered sorbitol (particularly in the range 0.9 to 0.7 M), was greater with spheroplasts enriched in sterols with an unsaturated side chain at C17 (ergosterol or stigmasterol) than with any of the other sterols. Plasma membranes were obtained from spheroplasts enriched in cholesterol or stigmasterol and had free sterol fractions containing 70 and 71%, respectively, of the sterol supplied exogenously to the cells. The sterol-phospholipid molar ratios in these membranes were, respectively, 1:7 and 1:8. 相似文献
14.
Lipid raft-based membrane compartmentation of a plant transport protein expressed in Saccharomyces cerevisiae
下载免费PDF全文

The hexose-proton symporter HUP1 shows a spotty distribution in the plasma membrane of the green alga Chlorella kessleri. Chlorella cannot be transformed so far. To study the membrane localization of the HUP1 protein in detail, the symporter was fused to green fluorescent protein (GFP) and heterologously expressed in Saccharomyces cerevisiae and Schizosaccharomyces pombe. In these organisms, the HUP1 protein has previously been shown to be fully active. The GFP fusion protein was exclusively targeted to the plasma membranes of both types of fungal cells. In S. cerevisiae, it was distributed nonhomogenously and concentrated in spots resembling the patchy appearance observed previously for endogenous H(+) symporters. It is documented that the Chlorella protein colocalizes with yeast proteins that are concentrated in 300-nm raft-based membrane compartments. On the other hand, it is completely excluded from the raft compartment housing the yeast H(+)/ATPase. As judged by their solubilities in Triton X-100, the HUP1 protein extracted from Chlorella and the GFP fusion protein extracted from S. cerevisiae are detergent-resistant raft proteins. S. cerevisiae mutants lacking the typical raft lipids ergosterol and sphingolipids showed a homogenous distribution of HUP1-GFP within the plasma membrane. In an ergosterol synthesis (erg6) mutant, the rate of glucose uptake was reduced to less than one-third that of corresponding wild-type cells. In S. pombe, the sterol-rich plasma membrane domains can be stained in vivo with filipin. Chlorella HUP1-GFP accumulated exactly in these domains. Altogether, it is demonstrated here that a plant membrane protein has the property of being concentrated in specific raft-based membrane compartments and that the information for its raft association is retained between even distantly related organisms. 相似文献
15.
16.
Delom F Szponarski W Sommerer N Boyer JC Bruneau JM Rossignol M Gibrat R 《Proteomics》2006,6(10):3029-3039
Calcofluor is an antifungal compound known to induce structural perturbations of the cell wall by interfering with the synthesis of chitin microfibril. Proteins from a stripped plasma membrane fraction were solubilized with the neutral and non-denaturing detergent, the n-dodecyl beta-D-maltoside. Proteins were then resolved using a recently described ion-exchange chromatography (IEC)/lithium dodecyl sulfate (LDS)-PAGE procedure. Nearly 90 proteins were identified and clustered, based on their pI, molecular weight, abundance and/or hydrophobicity. This method was then applied to profile the plasma membrane response to calcofluor. The LDS-PAGE patterns obtained from whole plasma membrane proteins were similar for the non-treated and calcofluor-treated samples. However, IEC/LDS-PAGE analysis revealed subtle changes in the expression of several proteins of low abundance, in response to calcofluor. These proteins include Pil1p and Lsp1p, two sphingolipid long-chain base-responsive inhibitors of protein kinases involved in signaling pathways for cell wall integrity and Rho1p, a small GTPase. It was recently hypothesized that Pil1p and Lsp1p could associate with, and regulate, the plasma membrane beta-1-3-glucan synthase, responsible for the synthesis of another major microfibril for yeast cell wall. Results are discussed with respect to both calcofluor effects on the plasma membrane proteins and the power of the IEC/LDS-PAGE procedure in the search for new potential therapeutics targets. 相似文献
17.
The phosphoinositol sphingolipids of Saccharomyces cerevisiae are highly localized in the plasma membrane. 总被引:4,自引:3,他引:4
下载免费PDF全文

To investigate the vital function(s) of the phosphoinositol-containing sphingolipids of Saccharomyces cerevisiae, we measured their intracellular distribution and found these lipids to be highly localized in the plasma membrane. Sphingolipids were assayed in organelles which had been uniformly labeled with [3H]inositol or 32P and by chemical measurements of alkali-stable lipid P, of long chain bases, and of very long chain fatty acids. We have developed an improved method for the preparation of plasma membranes which is based on the procedure of Duran et al. (Proc. Natl. Acad. Sci. USA 72:3952-3955, 1975). On the basis of marker enzyme and DNA assays carried out with a number of preparations, the plasma membranes contained less than 10% vacuolar membranes (alpha-mannosidase) and nuclei (DNA); the contamination by the endoplasmic reticulum (NADPH-cytochrome c reductase) varied from 0 to 20%. The plasma membrane preparations showed a 13-fold increase in the specific activity of vanadate-sensitive ATPase, compared with that in the homogenate, with a yield ranging from 50 to 80%. A comparison of the distribution of the ATPase with that of sphingolipids assayed by a variety of methods showed that 80 to 100% of the sphingolipids are localized in the plasma membrane; the sphingolipids constitute about 30% of the total phospholipid content of the plasma membrane. Minor amounts of sphingolipids that were found in isolated mitochondria and nuclei can be attributed to the presence of small amounts of plasma membrane in these fractions. These results suggest that one or more essential functions of these lipids is in the plasma membrane. Furthermore, sphingolipids may be useful chemical markers of the plasma membrane of S. cerevisiae. 相似文献
18.
Summary Some physiological properties of a multiple-drug-resistant mutant with a permeability barrier to chloramphenicol and its isogenic parental strain were compared. The ATPase specific activity of plasma and mitochondrial membranes isolated from the mutant strain was approximately 20% lower (P(0.001, Tables 1 and 2) than that of membranes isolated from the isogenic parental strain. Additional evidence of altered mitochondrial function was: (i) the enhanced growth of the parental strain was eliminated by the [rho-] state (Table 3); (ii) the mutant strain had a greater resistance to petite induction by ethidium bromide (Table 4); (iii) the mutant strain was unable to use a nonfermentable energy source for respiratory adaptation (Table 5). It is proposed that a single gene mutation has resulted in an alteration of some physiological properties of the plasma and mitochondrial membranes. 相似文献
19.
SSU1 encodes a plasma membrane protein with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae.
下载免费PDF全文

The Saccharomyces cerevisiae SSU1 gene was isolated based on its ability to complement a mutation causing sensitivity to sulfite, a methionine intermediate. SSU1 encodes a deduced protein of 458 amino acids containing 9 or 10 membrane-spanning domains but has no significant similarity to other proteins in public databases. An Ssu1p-GEP fusion protein was localized to the plasma membrane. Multicopy suppression analysis, undertaken to explore relationships among genes previously implicated in sulfite metabolism, suggests a regulatory pathway in which SSU1 acts downstream of FZF1 and SSU3, which in turn act downstream of GRR1. 相似文献
20.
Christine Lang-Hinrichs Ingo Queck Georg Büldt Ulf Stahl Volker Hildebrandt 《Molecular genetics and genomics : MGG》1994,244(2):183-188
The bop gene codes for the membrane protein bacterio-opsin (BO), which on binding all-trans-retinal, constitutes the light-driven proton pump bacteriorhodopsin (BR) in the archaebacterium Halobacterium salinarium The designation H. salinarium instead of the former designation H. halobium is used throughout this paper following the classification of Tindall (1992) . This gene was cloned in a yeast multi-copy vector and expressed in Saccharomyces cerevisiae under the control of the constitutive ADH1 promoter. Both the authentic gene and a modified form lacking the precursor sequence were expressed in yeast. Both proteins are incorporated into the membrane in S. cerevisiae. The presequence is thus not required for membrane targeting and insertion of the archaebacterial protein in budding yeast, or in the fission yeast Schizosaccharomyces pombe, as has been shown previously. However, in contrast to S. pombe transformants, which take on a reddish colour when all-trans-retinal is added to the culture medium as a result of the in vivo regeneration of the pigment, S. cerevisiae cells expressing BO do not take on a red colour. The precursor of BO is processed to a protein identical in size to the mature BO found in the purple membrane of Halobacterium. The efficiency of processing in S. cerevisiae is dependent on growth phase, as well as on the composition of the medium and on the strain used. The efficiency of processing of BR is reduced in S. pombe and in a retinal-deficient strain of H. salinarium, when retinal is present in the medium. 相似文献