首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand the distribution of Giardia cysts in drinking water supplies in Seoul, Korea, we collected water samples quarterly at 6 intakes in the Han River, its largest stream and 6 conventional water treatment plants (WTPs) serving drinking water, from 2000 to 2009. Giardia cysts in each of 10 L water were confirmed in 35.0% of intake water samples and the arithmetic mean was 1.65 cysts/10 L (range 0-35 cysts/10 L). The lowest cyst density was observed at Paldang and Kangbuk intakes, and the pollution level was higher at 4 intakes downstream. It seemed that these 4 intakes were under influence of Wangsuk stream at the end of which cysts were found in all samples with the mean of 140 cysts/10 L. The annual mean number of cysts was 0.21-4.21 cysts/10 L, and the cyst level at the second half of the 10 years was about 1/5 of that at first half on average. The cysts were more frequently found in winter, and their mean density was 3.74 cysts/10 L in winter and 0.80-1.08 cysts/10 L in other seasons. All finished water samples collected at 6 WTPs were negative for Giardia in each of 100 L sample for 10 years and cyst removal by physical process was average 2.9-log. It was concluded that conventional water treatment at 6 WTPs of Seoul appears to remove the cysts effectively under the present level of their source water. Domestic wastewater from the urban region could be an important source of Giardia pollution in the river.  相似文献   

2.
Hydatid cyst scolexes of lung and liver from sheep and water buffalo were electrophoreticaily examined for phosphoglucose isomerase (PGI), phosphoglucose mutase (PGM) and tetrazolium oxidase (Te) activity. One each of phosphoglucose isomerase, phosphoglucose mutase and tetrazolium oxidase activities were found in all of the hydatid cysts studied. PGI and PM in ail hydatid cysts studied appeared te be controlled by two codominant alleles. PGI and PGM proved to be a good taxonomic criterion to differentiate the hydatid cysts of the water buffalo from those from sheep. On the other hand, TO failed to differentiate between the sheep and water buffalo hydatid cysts. The hydatid cysts that parasitise the sheep's organs can be considered as arising from a different strain from the cysts that parasitise the water buffalo organs, while lung and liver hydatid cysts of the sheep appeared to be a similar strain.  相似文献   

3.
Immunomagnetic separation (IMS) procedures for the simultaneous isolation of Cryptosporidium oocysts and Giardia cysts have recently become available. We validated Dynal's GC-Combo IMS kit using source water at three turbidity levels (5000, 500 and 50 nephelometric turbidity units [ntu]) obtained from different geographical locations and spiked with approximately 9--11 (oo)cysts per ml. Mean recoveries of Cryptosporidium oocysts and Giardia cysts in deionized water were 62% and 69%, respectively. In turbid water matrices, mean recoveries of Cryptosporidium oocysts were between 55.9% and 83.1% while mean recoveries of cysts were between 61.1% and 89.6%. Marginally higher recoveries of the heat inactivated (oo)cysts were observed (119.4% Cryptosporidium oocysts and 90.9% Giardia cysts) in deionized water when compared with recoveries of viable (oo)cysts (69.7% Cryptosporidium oocysts and 79% Giardia cysts). Age of (oo)cysts on recoveries using the GC-Combo IMS kit demonstrated no effects up to 20 months old. Recovery of Giardia cysts was consistent for isolates aged up to 8 months (81.4%), however, a significant reduction in recoveries was noted at 20 months age. Recoveries of low levels (5 and 10 (oo)cysts) of Cryptosporidium oocysts and Giardia cysts in deionized water using IMS ranged from 51.3% to 78% and from 47.6% to 90.0%, respectively. Results of this study indicate that Dynal's GC-Combo IMS kit is an efficient technique to separate Cryptosporidium/Giardia from turbid matrices and yields consistent, reproducible recoveries. The use of fresh (recently voided and purified) (oo)cysts, aged (oo)cysts, viable and heat-inactivated (oo)cysts indicated that these parameters do not influence IMS performance.  相似文献   

4.
Several factors were studied to determine their effects on hatch and emergence of second-stage juveniles (J2) from cysts of Heterodera zeae. The optimum temperature for emergence of J2 from cysts of H. zeae was 30 C. No juveniles emerged from cysts at 10 or 40 C. Immersion of cysts in 4 mM zinc chloride solution stimulated 10% greater emergence of J2 than occurred in tap water controls during 28 days. Fresh corn rhizosphere leachates from 25-day and older plants growing in sand or sandy field soil stimulated 22-24% greater emergence of J2 from cysts than occurred in tap water after 28 days. Rhizosphere leachates stored for 30 days at 4 C and leachates of sand, sandy field soil, and silty field soil inhibited emergence of J2 from cysts by 7-12% compared to tap water. Rhizosphere leachates from corn plants aged 20, 30, 40, 50, or 60 days growing in sandy field soil stimulated emergence of J2 from cysts. Similar numbers of J2 emerged from cysts regardless of whether the source of cysts was field microplot cultures, greenhouse cultures, or growth chamber cultures. Fertilizing growth chamber cultures of H. zeae on corn plants resulted in a doubling of the numbers of cysts produced in the cultures, and those cysts yielded 2-3 times as many emerged J2 in hatching tests compared to cysts from similar unfertilized cultures.  相似文献   

5.
An antibody-magnetite method was developed in order to selectively concentrate Giardia cysts from water samples. The indirect technique employed a mouse immunoglobulin G anti-Giardia antibody as a primary antibody and an anti-mouse immunoglobulin G antibody-coated magnetite particle as a secondary labeling reagent. The magnetically labeled cysts were then concentrated by high-gradient magnetic separation. Ninety percent of the seeded cysts were recovered from buffer when this method was employed. An average of 82% of the seeded cysts were recovered from water samples with various turbidities. Significantly higher cyst recoveries were obtained from water samples with turbidities below 600 nephelometric turbidity units.  相似文献   

6.
Numerous waterborne outbreaks of giardiasis have occurred since 1965, yet little or no information has been reported on the viability of Giardia cysts in different aquatic environments. We have studied the viability of Giardia muris cysts suspended in lake, river, and tap water, while also monitoring water temperature, dissolved oxygen, pH, and other water quality parameters. Fecal pellets containing G. muris cysts were placed in glass vials covered with filter paper and exposed to (i) lake water at 15 ft (ca. 4.6 m) and 30 ft (ca. 9.2 m), (ii) river water, (iii) tap water, and (iv) distilled water stored under laboratory conditions. At 3, 7, 14, 28, 56, and 84 days, two vials from each environment were removed, and cyst viability was determined by (i) fluorogenic dye exclusion, (ii) production of giardiasis in an animal, and (iii) cyst morphology by Nomarski microscopy. In the fall, the cysts suspended at 30 ft in lake water remained viable for up to 56 days whereas cysts stored at 15 ft were nonviable after day 28. The G. muris cysts exposed to river water remained viable up to 28 days as determined by the production of giardiasis in mice. G. muris cysts suspended in tap water showed no signs of viability after 14 days, while cysts serving as controls (exposed to refrigerated distilled water) remained viable for up to 56 days. In the winter, Giardia cysts suspended in either lake or river water were viable for 56 to 84 days whereas cysts exposed to tap water were nonviable by day 14.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Viability of Giardia cysts suspended in lake, river, and tap water.   总被引:5,自引:4,他引:1       下载免费PDF全文
Numerous waterborne outbreaks of giardiasis have occurred since 1965, yet little or no information has been reported on the viability of Giardia cysts in different aquatic environments. We have studied the viability of Giardia muris cysts suspended in lake, river, and tap water, while also monitoring water temperature, dissolved oxygen, pH, and other water quality parameters. Fecal pellets containing G. muris cysts were placed in glass vials covered with filter paper and exposed to (i) lake water at 15 ft (ca. 4.6 m) and 30 ft (ca. 9.2 m), (ii) river water, (iii) tap water, and (iv) distilled water stored under laboratory conditions. At 3, 7, 14, 28, 56, and 84 days, two vials from each environment were removed, and cyst viability was determined by (i) fluorogenic dye exclusion, (ii) production of giardiasis in an animal, and (iii) cyst morphology by Nomarski microscopy. In the fall, the cysts suspended at 30 ft in lake water remained viable for up to 56 days whereas cysts stored at 15 ft were nonviable after day 28. The G. muris cysts exposed to river water remained viable up to 28 days as determined by the production of giardiasis in mice. G. muris cysts suspended in tap water showed no signs of viability after 14 days, while cysts serving as controls (exposed to refrigerated distilled water) remained viable for up to 56 days. In the winter, Giardia cysts suspended in either lake or river water were viable for 56 to 84 days whereas cysts exposed to tap water were nonviable by day 14.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
An inexpensive, practical, and reliable method for isolation of Giardia lamblia cysts from potable and environmental water has been developed from commercially available components. This system was successfully used to isolate cysts from well water associated with a family outbreak of giardiasis.  相似文献   

9.
DNA templates were extracted from isolates of Sarcocystis hominis-like cysts collected from cattle and water buffalo, as well as from Sarcocystis fusiformis cysts and Sarcocystis suihominis cysts. The 18S rRNA genes were amplified using DNA from a single cyst as the templates. Approximately 1,367-1,440 bp sequences were obtained. The sequence difference in isolates of Sarcocystis hominis-like cysts from water buffaloes, and isolates of S. hominis cysts from cattle were very low, only about 0.1%, much lower than the lowest value (1.7%) among different species. Combined with their morphological structure, these sequence data indicate that the 4 isolates from cattle and water buffalo might be the same species, i.e., S. hominis, suggesting that both cattle and water buffalo may serve as the intermediate hosts for this parasite. Apparently, this is the first report using a single cyst to do such work and is a useful way to distinguish the Sarcocystis cyst in an intermediate host that may be simultaneously infected by several different Sarcocystis species.  相似文献   

10.
A method was developed in which indirect immunofluorescence and phase-contrast microscopy are used for rapid detection and identification of Giardia cysts in raw and finished water supplies. When anti-Giardia cyst antiserum and fluorescein conjugate were applied to known Giardia cysts on membrane filters, the cysts fluoresced bright green when they were illuminated by UV light. This procedure permitted individual cysts to be quickly located even in samples heavily contaminated with other microorganisms and debris. The identity of presumptive Giardia cysts located in this way could then be confirmed by observing characteristic internal morphological features with phase-contrast microscopy. With this method, Giardia cysts were detected and their identities were confirmed in samples taken from raw and finished surface water supplies during several recent outbreaks.  相似文献   

11.
The steps of two immunofluorescent-antibody-based detection methods were evaluated for their efficiencies in detecting Giardia cysts and Cryptosporidium oocysts. The two methods evaluated were the American Society for Testing and Materials proposed test method for Giardia cysts and Cryptosporidium oocysts in low-turbidity water and a procedure employing sampling by membrane filtration, Percoll-Percoll step gradient, and immunofluorescent staining. The membrane filter sampling method was characterized by higher recovery rates in all three types of waters tested: raw surface water, partially treated water from a flocculation basin, and filtered water. Cyst and oocyst recovery efficiencies decreased with increasing water turbidity regardless of the method used. Recoveries of seeded Giardia cysts exceeded those of Cryptosporidium oocysts in all types of water sampled. The sampling step in both methods resulted in the highest loss of seeded cysts and oocysts. Furthermore, much higher recovery efficiencies were obtained when the flotation step was avoided. The membrane filter method, using smaller tubes for flotation, was less time-consuming and cheaper. A serious disadvantage of this method was the lack of confirmation of presumptive cysts and oocysts, leaving the potential for false-positive Giardia and Cryptosporidium counts when cross-reacting algae are present in water samples.  相似文献   

12.
A method was developed in which indirect immunofluorescence and phase-contrast microscopy are used for rapid detection and identification of Giardia cysts in raw and finished water supplies. When anti-Giardia cyst antiserum and fluorescein conjugate were applied to known Giardia cysts on membrane filters, the cysts fluoresced bright green when they were illuminated by UV light. This procedure permitted individual cysts to be quickly located even in samples heavily contaminated with other microorganisms and debris. The identity of presumptive Giardia cysts located in this way could then be confirmed by observing characteristic internal morphological features with phase-contrast microscopy. With this method, Giardia cysts were detected and their identities were confirmed in samples taken from raw and finished surface water supplies during several recent outbreaks.  相似文献   

13.
Methods for the simultaneous detection of Cryptosporidium parvum oocysts and Giardia cysts from water are described and their relative recovery efficiencies are assessed for seeded samples of both tap and river water. Cartridge filtration, membrane filtration, and calcium carbonate flocculation were evaluated, and steps to optimize the concentration procedures were undertaken. Increasing centrifugation to 5,000 x g, coupled with staining in suspension, was found to increase the overall efficiency of recovery of both cysts and oocysts. Cartridge filtration for both cysts and oocysts was examined by use of 100-liter volumes of both tap and river water. Improvements in recovery were observed for Cryptosporidium oocysts after extra washes of the filters. Calcium carbonate flocculation gave the maximum recovery for both Cryptosporidium oocysts and Giardia cysts and for both water types. A variety of 142-mm membranes was examined by use of 10-liter seeded samples of tap and river water. Cellulose acetate with a 1.2-micron pore size provided the best results for Cryptosporidium oocysts, and cellulose nitrate with a 3.0-micron pore size did so for Giardia cysts.  相似文献   

14.
Two adjacent British Columbia, Canada, watersheds with similar topographical features were studied. Both the Black Mountain Irrigation District (BMID) and the Vernon Irrigation District (VID) serve rural agricultural communities which are active in cattle ranching. The present study was carried out in five phases, during which a total of 249 surface water samples were tested in the study watersheds. The aims of these phases were to determine levels of parasite contamination in raw water samples collected from the intakes as well as from other sites in each watershed and to investigate cattle in the watersheds as potential sources of parasite contamination of surface drinking water supplies. Giardia cysts were not detected in the raw water samples collected from lake sources at the headwaters of both watersheds but were found in 100% (70 or 70) of water samples collected at the BMID intake and 97% (68 of 70) of water samples collected at the VID intake. Significantly higher levels (P < 0.05) of Giardia cysts were found at the BMID intake (phase 1, 7 to 2,215 cysts per 100 liters; phase 3, 4.6 to 1,880 cysts per 100 liters) when compared with that of the VID intake (2 to 114 cysts per 100 liters). The BMID watershed has a more complex system of surface water sources than the VID watershed. Cattle have access to creeks in the BMID watershed, whereas access is restricted in the VID watershed. Collection of raw water samples from a creek upstream and downstream of a cattle ranch in the BMID watershed showed that the downstream location had significantly higher (P < 0.05) levels (0.6 to 42.9 cysts per 100 liters and 1.4 to 300.0 oocysts per 100 liters) of both Giardia cysts and Cryptosporidium oocysts than those of the upstream location (0.5 to 34.4 cysts per 100 liters and 0.5 to 34.4 oocysts per 100 liters). Peak concentrations of both parasites coincided with calving activity. Fecal samples, collected from cattle in both watersheds, showed 10% (3 of 30) in the BMID and 50% (5 of 10) in the VID watersheds to be Giardia positive. No Cryptosporidium-positive fecal samples were found. Giardia cysts isolated from the BMID watershed were repeatedly infective to gerbils in contrast to those from the VID watershed. The 10 BMID drinking water Giardia isolates retrieved into culture and biotyped showed zymodeme and karyotype heterogeneity. The differences in patterns of parasite contamination and cattle management practices contribute to the unique watershed characteristics observed between two areas which are topographically similar and geographically adjacent.  相似文献   

15.
Giardiasis is the most common human parasite infection in the United States, causing a lengthy course of diarrhea. Transmission of Giardia species is by the fecal-oral route, and numerous waterborne outbreaks have been documented. The Environmental Protection Agency has regulated Giardia species in drinking water through the Surface Water Treatment Rule. Current methods for detection of Giardia species in water rely primarily on microscopic observation of water concentrates with immunofluorescence techniques. We evaluated the efficacy of using a gene-specific probe for the detection of Giardia species in water. A cDNA probe, 265 bp long, from the small subunit of rRNA of Giardia lamblia was used for detection of cysts. The replicative form of the M13 vector with an insert was isolated from lysed host Escherichia coli XL1-Blue and used for production of the cDNA probe by nick translation with 32P-labeled nucleotides. Six different protocols were tested for extracting nucleic acids from the cysts. With the most efficient procedure, disrupting Giardia cysts with glass beads in the presence of proteinase K, as few as 1 to 5 cysts per ml can be detected in water sample concentrates with dot blot hybridization assays.  相似文献   

16.
Giardiasis is the most common human parasite infection in the United States, causing a lengthy course of diarrhea. Transmission of Giardia species is by the fecal-oral route, and numerous waterborne outbreaks have been documented. The Environmental Protection Agency has regulated Giardia species in drinking water through the Surface Water Treatment Rule. Current methods for detection of Giardia species in water rely primarily on microscopic observation of water concentrates with immunofluorescence techniques. We evaluated the efficacy of using a gene-specific probe for the detection of Giardia species in water. A cDNA probe, 265 bp long, from the small subunit of rRNA of Giardia lamblia was used for detection of cysts. The replicative form of the M13 vector with an insert was isolated from lysed host Escherichia coli XL1-Blue and used for production of the cDNA probe by nick translation with 32P-labeled nucleotides. Six different protocols were tested for extracting nucleic acids from the cysts. With the most efficient procedure, disrupting Giardia cysts with glass beads in the presence of proteinase K, as few as 1 to 5 cysts per ml can be detected in water sample concentrates with dot blot hybridization assays.  相似文献   

17.
J S Clegg 《Cell biophysics》1984,6(3):153-169
Cysts of the crustacean Artemia are a useful model for studies on intracellular water because they are capable of essentially complete and reversible desiccation. We have used a variety of techniques on this system, the present work being an attempt to estimate the density of intracellular water (rho w). The density of individual cysts was evaluated from sedimentation velocity. Heptane displacement methods were used to determine the volume of a known mass of cysts, from which the density was calculated. The two methods produce comparable results. It was shown that the densities and water contents of large masses of cysts accurately reflect those of individual cysts. Cyst densities (rho c) were determined over the entire range of water content from 0 to 0.63 weight fraction of water (Wf), and temperature dependence was measured for 0.61 Wf over 2-41 degrees C. The following refer to 25 degrees C. No marked change was detected in rho c until the water content exceeded 0.15 Wf, at which rho c decreased as a linear function of Wf to maximum water content. However, the cyst does not behave ideally in the sense that the densities of the nonaqueous components and added water are not additive as a function of Wf. The partial specific volume of water in cysts at maximum hydration was estimated to be 3% larger than that of pure water. These observations are compared with density measurements on other systems, and with previous findings on the physical properties of water in this system.  相似文献   

18.
Several outbreaks of waterborne giardiasis have occurred in southern Canada, but nothing has been reported from the Canadian North. The objective of this study was to collect information relevant to waterborne giardiasis and cryptosporidiosis in the Yukon including epidemiological data and analyses of water, sewage, and animal fecal samples. Remote, pristine water samples were found to be contaminated with Giardia cysts (7 of 22 or 32%) but not with Cryptosporidium oocysts. Giardia cysts were found in 21% (13 of 61) of animal scats, but no Cryptosporidium oocysts were observed (small sample size). Whitehorse's drinking water was episodically contaminated with Giardia cysts (7 of 42 or 17%) and Cryptosporidium oocysts (2 of 42 or 5%). Neither were found in Dawson City's water supply. The only water treatment in the Yukon is chlorination, but contact times and free chlorine residuals are often too low to provide adequate protection by disinfection. Raw sewage samples from the five largest population centers in the Yukon contained 26 to 3,022 Giardia cysts and 0 to 74 Cryptosporidium oocysts per liter. Treated sewage from Whitehorse contained fewer Giardia cysts but more Cryptosporidium oocysts on average. Both were detected in Lake Laberge, downstream of Whitehorse, which has a history of fecal coliform contamination. Daily monitoring of raw sewage from the suburbs of Whitehorse showed a summertime peak of Giardia cysts and occasional Cryptosporidium oocysts after springtime contamination of drinking water. Despite this evidence, epidemiological data for the Yukon showed an endemic infection rate of only 0.1% for giardiasis (cryptosporidiosis is not notifiable).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
本文列举了大量具过顶古口缝的沟鞭藻囊孢在海相和非海相沉积中的记录,指出具有一构造的沟鞭藻囊孢可以细分成两个亚类,分别代表晚白垩世从海相澡类家族中分化出的两个分支:一个以Palaceperidinium为代表,具有bipesioid型反映板式;另一支以Saeptodinium为代表,具有bipesioid或cinctioid型反映板式,前者在晚白垩世开始向淡水环境迁移,但仍有部分留在海水中,一直延续  相似文献   

20.
Electron microscopy of Giardia lamblia cysts.   总被引:1,自引:0,他引:1       下载免费PDF全文
The flagellated protozoan Giardia lamblia is a recognized public health problem. Intestinal infection can result in acute or chronic diarrhea with associated symptoms in humans. As part of a study to evaluate removal of G. lamblia cysts from drinking water by the processes of coagulation and dual-media filtration, we developed a methodology by using 5.0-microns-porosity membrane filters to evaluate the filtration efficiency. We found that recovery rates of G. lamblia cysts by membrane filtration varied depending upon the type and diameter of the membrane filter. Examination of membrane-filtered samples by scanning electron microscopy revealed flexible and flattened G. lamblia cysts on the filter surface. This feature may be responsible for the low recovery rates with certain filters and, moreover, may have implications in water treatment technology. Formation of the cyst wall is discussed. Electron micrographs of cysts apparently undergoing binary fission and cysts exhibiting a possible bacterial association are shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号