首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developmental changes in mesodermal activity to induce intestine-like differentiation expressing sucrase antigen in the endoderm and changes in endodermal reactivity to such an activity in the digestive tract of the chick embryo were analyzed. Digestive-tract endoderms of embryos at 3 days of incubation were highly responsive to the inductive effect of the 5 day duodenal mesenchyme, with the stomach endoderm lying nearest to the intestine having the highest reactivity. Endodermal reactivity decreased with increasing age. It was almost absent in the endoderm of the esophagus or proventriculus of 6 day embryos and in the endoderm of the gizzard of 7 day embryos. The activity of the mesoderm to induce intestine-like differentiation in 5 day gizzard endoderm was high in the 5–10 day duodenal mesenchyme, but was rarely found in 14 day duodenal mesenchyme. This activity was specific to intestinal mesenchymes, among which the duodenal mesenchyme had the highest activity in 5 day embryos. The 3 day intestinal mesenchyme may already have the inductive activity. The presumptive intestinal mesoderm of 1.5 day embryos seemed to have a slight or no activity, but it may have intestinal identity and may manifest a high inductive activity later.  相似文献   

2.
The ultrastructure of the digestive tract of tornaria larva of enteropneusts was investigated. It showed that the digestive tract consists of three parts: esophagus, stomach, and intestine. The esophagus epithelium consists of two types of multiciliated epithelial cells and solitary muscle cells. Axonal tracts and neurons were found in the ventral wall of the esophagus. The cardiac sphincter contains an anterior band of strongly ciliated cells and a posterior band of cells with long vacuolized processes which partition the sphincter lumen. The stomach consists of three cell types: (1) cells with electron-opaque cytoplasm, bearing a fringed border on their apical sides; (2, 3) sparse cells with electron-light cytoplasm and different patterns of apical microvilli. Cells of the pyloric sphincter bear numerous cilia and almost no microvilli. The intestine consists of three parts. The anterior part is formed of multiciliated cells which bear the fringed border. The middle part consists of flattened cells bearing rare cilia and vast numbers of mace-like microvilli. The posterior part of the intestine is formed of cells bearing numerous cilia and few microvilli. Muscle cells were not found in either stomach or intestine epithelium. One noticed that the structure of the digestive tract of enteropneust tornaria larva differs from that of echinoid pluteus larva.  相似文献   

3.
C-9-1, a monoclonal IgM antibody raised against human null cell acute lymphocytic leukemia cells reacted with restricted regions of embryonic and adult tissues of the mouse. The antigen positive sites in the embryos included embryonic ectoderm, visceral endoderm, trophoblastic cells invading the maternal decidua of 5∼7-day embryos, primordial germ cells of 10∼12-day embryos, epithelium of nasal chamber, the bronchus, Mullerian duct, epididymis and bladder of 12∼17-day embryos. In the adult mice, C-9-1 antigen was detected in renal tubules, a part of stomach, bladder, endometrium and epididymal sperm. Embryonal carcinoma cells, but not endodermal cells of teratocarcinoma expressed the antigen. Thus, C-9-1 antigen showed distribution similar to SSEA-1. However, C-9-1 antigen was not detected in preimplantation embryos, nor in oviduct, both of which are positive for SSEA-1.  相似文献   

4.
The expression of the cell surface-associated glycoprotein fibronectin was studied by indirect immunofluorescence in the early stages of mouse embryogenesis. Fibronectin was not detectable in early preimplantation embryos. Trace amounts of the protein were first found between the cells of the inner cell mass of late blastocysts. In implanted early egg cylinders, fibronectin was deposited between the ectoderm and endoderm of the inner cell mass and in the nascent Reichert's membrane. With development, the visceral and the parietal endoderm cells became positive for the protein, but no fibronectin was detected in ectoderm cells. During segregation of mesoderm from ectoderm, fibronectin appeared in mesoderm cells and as a band between the two germ layers. In the developing amnion and chorion, the protein was localized between the ectodermal and mesodermal cell layers. The results indicate that fibronectin is an early differentiation market for the stage of endoderm formation in the inner cell mass of the mouse blastocyst. It is also a marker of mesoderm appearance and seems to be associated with the accumulating extracellular matrix material in the developing embryo.  相似文献   

5.
Pinocytosis of macromolecules from the gut lumen is demonstrated for the first time in larval stages of invertebrates. Developing sea stars ( Patiria miniata ) and sea urchins ( Lytechinus pictus ) were incubated in seawater containing ferritin, which was detected in cell organelles by transmission electron microscopy. Pinocytotic uptake of ferritin by gut cells of Patiria could be detected as soon as the larval mouth opened before the esophagus, stomach and intestine could be distinguished from one another; in contrast, no pinocytosis was detected at the comparable developmental stage (the prism larva) of Lytechinus . Pinocytosis was first detected in developing Lytechinus in pluteus larvae, especially in the stomach and intestine. In gut cells of both kinds of echinoderm larvae, the ferritin progressed rapidly from coated pits at the luminal cell membrane to secondary lysosomes (e.g. this progression took only about 10 min in stomach cells of Patiria larvae). Phagocytosis from the gut lumen was never observed after latex beads or starch granules were fed to larvae of Patiria and Lytechinus . Moreover, there was no evidence of pinocytosis of ferritin or phagocytosis of large particles by epidermal cells of larvae of either species.  相似文献   

6.
Rat-mouse hybridoma antibodies were produced against mouse teratocarcinoma F9 or PCC4 aza1 cells, and four clones were established. Both the F11 (IgM) and F20 (IgG2c) antibodies showed a similar specificity, reacting only with nullipotential teratocarcinoma cells. They were also found to agglutinate sheep red blood cells. Solid-phase enzyme-linked immunofluorescence assay showed that, among the neutral glycolipids studied, they only reacted with the Forssman antigen. P2 antibody (IgG2b) reacted with the undifferentiated-type and embryonal endodermtype teratocarcinoma cells. During the preimplantation stage, this antibody did not stain mouse embryos, but it reacted very weakly with the inner cell mass of blastocysts cultured in vitro. In the 5th-day embryo, the embryonic ectoderm as well as the visceral and parietal endoderm were positive, but the extraembryonic ectoderm was not. Mesoderm of the 7.5th-day embryo also reacted with this antibody. However, P2 antigen was not observed in the 16th-day embryo or in adult tissues. F2 antibody (IgG2a), which was reactive with all of the cultured cell lines tested, showed an immunoreaction with mouse embryos throughout the preimplantation stage. However, in the 7.5th-day embryo, the presence of F2 was limited to the cells forming the parietal endoderm. This antigen was present in some epithelial tissues of the 16th-day embryo and adult mouse. Of these antigens, P2 and F2 are probably novel differentiation antigens of the early mouse embryo. Together with the Forssman antigen, these will be important markers for analyzing cell-surface antigens of mouse teratocarcinoma cells as well as embryos.  相似文献   

7.
Syndecan is an integral membrane proteoglycan that binds cells to several interstitial extracellular matrix components and binds to basic fibroblast-growth factor (bFGF) thus promoting bFGF association with its high-affinity receptor. We find that syndecan expression undergoes striking spatial and temporal changes during the period from the early cleavage through the late gastrula stages in the mouse embryo. Syndecan is detected initially at the 4-cell stage. Between the 4-cell and late morula stages, syndecan is present intracellularly and on the external surfaces of the blastomeres but is absent from regions of cell-cell contact. At the blastocyst stage, syndecan is first detected at cell-cell boundaries throughout the embryo and then, at the time of endoderm segregation, becomes restricted to the first site of matrix accumulation within the embryo, the interface between the primitive ectoderm and primitive endoderm. During gastrulation, syndecan is distributed uniformly on the basolateral cell surfaces of the embryonic ectoderm and definitive embryonic endoderm, but is expressed with an anteroposterior asymmetry on the surface of embryonic mesoderm cells, suggesting that it contributes to the process of mesoderm specification. In the extraembryonic region, syndecan is not detectable on most cells of the central core of the ectoplacental cone, but is strongly expressed by cells undergoing trophoblast giant cell differentiation and remains prominent on differentiated giant cells, suggesting a role in placental development. Immunoprecipitation studies indicate that the size of the syndecan core protein, although larger than that found in adult tissues (75 versus 69 x 10(3) Mr), does not change during peri-implantation development. The size distribution of the intact proteoglycan does change, however, indicating developmental alterations in its glycosaminoglycan composition. These results indicate potential roles for syndecan in epithelial organization of the embryonic ectoderm, in differential axial patterning of the embryonic mesoderm and in trophoblast giant cell function.  相似文献   

8.
Summary Inductive action of duodenal mesenchyme on stomach endoderm in the chick embryo was chronologically analysed in vitro by the use of electron microscopy and immunofluorescence techniques. The behaviour of the endoderm-mesenchyme interfaces was particularly studied during the induction. In recombinates of 4-day stomach endoderm and 6-day duodenal mesenchyme, all the endodermal cells were undifferentiated at the start of cultivation. Small-intestinal sucrase antigen could first be detected on the 5th day of cultivation in one-third of the stomach endoderm, and a striated border on the 7th day. With a longer cultivation period, intestine-type cells increased in number in the stomach endoderm and the density of microvilli on the apical surface became higher. At the endoderm-mesenchyme interfaces a number of direct contacts between endodermal and mesenchymal cells were observed from the beginning to the end of cultivation. These were especially abundant in the early period before the appearance of signs of intestinal cytodifferentiation. These results suggest that the mesenchymal cells adjacent to the endodermal tissue play an important role in the intestinal induction which occurs during the early period of cultivation, probably via direct cell-to-cell contracts.  相似文献   

9.
The process of embryogenesis is described for the inarticulate brachiopod Discinisca strigata of the family Discinidae. A fate map has been constructed for the early embryo. The animal half of the egg forms the dorsal ectoderm of the apical and mantle lobes. The vegetal half forms mesoderm and endoderm and is the site of gastrulation; it also forms the ectoderm of the ventral regions of the apical and mantle lobes of the larva. The plane of the first cleavage goes through the animal-vegetal axis of the egg along the future plane of bilateral symmetry of the larva. The timing of regional specification in these embryos was examined by isolating animal, vegetal, or lateral regions at different times from the 2-cell stage through gastrulation. Animal halves isolated at the 8-cell and blastula stages formed an epithelial vesicle and did not gastrulate. When these halves were isolated from blastulae they formed the cell types typical of apical and mantle lobes. Vegetal halves isolated at all stages gastrulated and formed a more or less normal larva; the only defect these larvae had was the lack of an apical tuft, which normally forms from cells at the animal pole of the embryo. When lateral isolates were created at all developmental stages, these halves gastrulated. Cuts which separated presumptive anterior and posterior regions generated isolates at the 4-cell and blastula stages that formed essentially normal larvae; however, at the midgastrula stage these halves formed primarily anterior or posterior structures indicating that regional specification had taken place along the anterior-posterior axis. The plane of the first cleavage, which predicts the plane of bilateral symmetry, can be shifted by either changing the cleavage pattern that generates the bilateral 16-cell blastomere configuration or by isolating embryo halves prior to, or during, the 16-cell stage. These results indicate that while the plane of the first cleavage predicts the axis of bilateral symmetry, the axis is not established until the fourth cleavage. The development of Discinisca is compared to development in the inarticulate brachiopod Glottidia of the family Lingulidae and to Phoronis in the phylum Phoronida.  相似文献   

10.
Earlier studies have shown that two types of septate junction are formed during early sea urchin morphogenesis. One type is the straight, unbranched, double septum septate (SUDS) which is found in the ectodermal layer throughout early development. The second type is formed only in cells which invaginate to become endoderm and to form the digestive tract. This junction is characterized by pleated, anastomosing, single septum septates (PASS). In order to ascertain in which parts of the digestive tract these junctions are formed, we studied exogastrulae because the endoderm is everted and forms constricted areas of the gut which are easily recognizable. Our results show that, in control embryos, SUDS septates are found in the mouth, esophagus and coelom and that PASS septates are found in the stomach, intestine and anus. These junctional types are also found in the same areas in exogastrulae; SUDS septates are found in the stomadeum, esophagus and coelom, and PASS septates are found in the stomach and intestine. The transition from SUDS to PASS junctions takes place within the same time period in exogastrulae as in normal embryos, i.e., from the time of mid-gastrulation through the pluteus stage. These results indicate that septate junction formation in the sea urchin embryo digestive tract may be genetically programmed in terms of both time and spatial location. This program is not altered either by the major dislocation of cells from their normal position within the embryo or from normal contacts with neighboring cells.  相似文献   

11.
Abstract. The ultrastructure of the day 8.5 mouse embryo has been studied by transmission electron microscopy, with special emphasis on the primary mesenchymal cells and their interaction with cells of the embryonic ectoderm and the proximal endoderm. The organization of the two polar epithelial cell layers (embryonic ectoderm and proximal endoderm), the isolated cells of the distal endoderm and the primary mesenchymal cells is described. Primary mesenchymal cells are different from embryonic ectoderm cells, from which they are derived, not only by the absence of desmosomes and intermediate-sized filaments of the cytokeratin type but also by their variable morphology not exhibiting stable polar architecture, and their numerous cytoplasmic processes which make contacts with the basal lamina of the ectoderm, the basal cell surface of the proximal endoderm, and other mesenchymal cells. Over most of the embryo the embryonic ectoderm is covered by a typical basal lamina, except for certain regions that are frequently characterized by cytoplasmic projections ('blebs') from the basal cell surface membrane. In contrast, the basal surface of the proximal endoderm is not covered by a continuous basal lamina and reveals mushroom-like protrusions of the cortical cytoplasm. Junctions between primary mesenchymal cells are numerous and include adhaerens-type formations of various sizes as well as gap junctions. Occasionally, a special type of junction between mesenchymal cells and embryonic ectoderm has been found, resulting in local interruptions of the basal lamina. The observations are discussed in relation to possible mechanisms of mesoderm formation and the drastic changes of cell character that accompany this process, including cytoskeletal changes such as the disappearance of cytokeratin filaments and the expression of vimentin.  相似文献   

12.
为了解银鲳(Pampus argenteus)消化道结构特点与其功能及食性的相关性, 采用解剖、石蜡切片、AB-PAS染色及酶活性检测技术对银鲳消化道的形态、组织结构、黏液细胞分布及消化酶活性进行研究。结果显示, 银鲳的消化道由口咽腔(舌)、食道侧囊、食道、胃及肠构成, 胃肠交界处有很多幽门盲囊。食道侧囊呈椭球形, 食道粗短, 胃呈U型, 肠有多个盘曲, 肠指数为2.03。舌上皮内有少量味蕾及较多黏液细胞。食道侧囊、食道、胃及肠均由黏膜层、黏膜下层、肌层及浆膜组成。食道侧囊内皱襞较发达, 被覆复层扁平上皮, 内含较多黏液细胞, 且以Ⅳ型为主, 皱襞顶端及侧面有内含角质刺的次级突起; 黏膜下层及肌层中有固定皱襞的骨质脚根; 侧囊内胃蛋白酶活性较高。食道内皱襞较高, 被覆复层扁平上皮, 内含较多黏液细胞, 且以Ⅳ型为主。胃内皱襞发达, 被覆单层柱状上皮, 未见黏液细胞分布; 胃腺发达, 胃内蛋白酶活性较高。肠道内褶襞多, 高度呈先下降后上升趋势, 黏液细胞密度前、中肠较高, 后肠较低, 且均以Ⅰ型为主; 肠道内胰蛋白酶、脂肪酶、淀粉酶及碱性磷酸酶活性较高。幽门盲囊组织结构与肠相似。银鲳的消化道结构特点、黏液细胞分布及消化酶活性与其功能及偏肉食的杂食性相适应。  相似文献   

13.
The ultrastructure of the day 8.5 mouse embryo has been studied by transmission electron microscopy, with special emphasis on the primary mesenchymal cells and their interaction with cells of the embryonic ectoderm and the proximal endoderm. The organization of the two polar epithelial cell layers (embryonic ectoderm and proximal endoderm), the isolated cells of the distal endoderm and the primary mesenchymal cells is described. Primary mesenchymal cells are different from embryonic ectoderm cells, from which they are derived, not only by the absence of desmosomes and intermediate-sized filaments of the cytokeratin type but also by their variable morphology not exhibiting stable polar architecture, and their numerous cytoplasmic processes which make contacts with the basal lamina of the ectoderm, the basal cell surface of the proximal endoderm, and other mesenchymal cells. Over most of the embryo the embryonic ectoderm is covered by a typical basal lamina, except for certain regions that are frequently characterized by cytoplasmic projections ("blebs') from the basal cell surface membrane. In contrast, the basal surface of the proximal endoderm is not covered by a continuous basal lamina and reveals mushroom-like protrusions of the cortical cytoplasm. Junctions between primary mesenchymal cells are numerous and include adhaerens-type formations of various sizes as well as gap junctions. Occasionally, a special type of junction between mesenchymal cells and embryonic ectoderm has been found, resulting in local interruptions of the basal lamina. The observations are discussed in relation to possible mechanisms of mesoderm formation and the drastic changes of cell character that accompany this process, including cytoskeletal changes such as the disappearance of cytokeratin filaments and the expression of vimentin.  相似文献   

14.
Divergent patterns of neural development in larval echinoids and asteroids   总被引:2,自引:0,他引:2  
The development and organization of the nervous systems of echinoderm larvae are incompletely described. We describe the development and organization of the larval nervous systems of Strongylocentrotus purpuratus and Asterina pectinifera using a novel antibody, 1E11, that appears to be neuron specific. In the early pluteus, the antibody reveals all known neural structures: apical ganglion, oral ganglia, lateral ganglia, and an array of neurons and neurites in the ciliary band, the esophagus, and the intestine. The antibody also reveals several novel features, such as neurites that extend to the posterior end of the larva and additional neurons in the apical ganglion. Similarly, in asteroid larvae the antibody binds to all known neural structures and identifies novel features, including large numbers of neurons in the ciliary bands, a network of neurites under the oral epidermis, cell bodies in the esophagus, and a network of neurites in the intestine. The 1E11 antigen is expressed during gastrulation and can be used to trace the ontogenies of the nervous systems. In S. purpuratus, a small number of neuroblasts arise in the oral ectoderm in late gastrulae. The cells are adjacent to the presumptive ciliary bands, where they project neurites with growth cone-like endings that interconnect the neurons. In A. pectinifera, a large number of neuroblasts appear scattered throughout the ectoderm of gastrulae. The cells aggregate in the developing ciliary bands and then project neurites under the oral epidermis. Although there are several shared features of the larval nervous systems of echinoids and asteroids, the patterns of development reveal fundamental differences in neural ontogeny.  相似文献   

15.
Nodal factors play crucial roles during embryogenesis of chordates. They have been implicated in a number of developmental processes, including mesoderm and endoderm formation and patterning of the embryo along the anterior-posterior and left-right axes. We have analyzed the function of the Nodal signaling pathway during the embryogenesis of the sea urchin, a non-chordate organism. We found that Nodal signaling plays a central role in axis specification in the sea urchin, but surprisingly, its first main role appears to be in ectoderm patterning and not in specification of the endoderm and mesoderm germ layers as in vertebrates. Starting at the early blastula stage, sea urchin nodal is expressed in the presumptive oral ectoderm where it controls the formation of the oral-aboral axis. A second conserved role for nodal signaling during vertebrate evolution is its involvement in the establishment of left-right asymmetries. Sea urchin larvae exhibit profound left-right asymmetry with the formation of the adult rudiment occurring only on the left side. We found that a nodal/lefty/pitx2 gene cassette regulates left-right asymmetry in the sea urchin but that intriguingly, the expression of these genes is reversed compared to vertebrates. We have shown that Nodal signals emitted from the right ectoderm of the larva regulate the asymmetrical morphogenesis of the coelomic pouches by inhibiting rudiment formation on the right side of the larva. This result shows that the mechanisms responsible for patterning the left-right axis are conserved in echinoderms and that this role for nodal is conserved among the deuterostomes. We will discuss the implications regarding the reference axes of the sea urchin and the ancestral function of the nodal gene in the last section of this review.  相似文献   

16.
A fate map has been constructed for the embryo of Crania. The animal half of the egg forms the ectodermal epithelium of the larva's apical lobe. The vegetal half of the egg forms endoderm, mesoderm, and the ectoderm of the mantle lobe. The vegetal pole is the site of gastrulation; this site becomes the posterior ventral region of the mantle lobe of the larva. The plane of the first cleavage goes through the animal-vegetal axis of the egg; it bears no relationship to the future plane of bilateral symmetry of the larva. The timing of regional specification was examined by isolating animal, vegetal, or meridional halves from oocytes, eggs, or embryos from prior to germinal vesicle breakdown through gastrulation. Animal halves isolated from oocytes formed either the epithelium of the apical lobe or a larva with all three germ layers. Animal halves isolated from unfertilized eggs and eight-cell embryos formed only apical lobe epithelium. Beginning at the blastula stage, animal halves formed mantle in addition to apical lobe epithelium. In animal halves isolated after gastrulation, the mantle lobe was always truncated. Vegetal halves isolated at all stages prior to gastrulation gastrulated and formed apical and mantle lobes with endoderm and mesoderm; however, the relative size of the apical lobe that formed decreased substantially when vegetal halves were isolated at later developmental stages. When meridional halves were isolated from unfertilized eggs and two- to four-cell embryos, both halves frequently formed normally proportioned larvae. Beginning at the blastula stage, a number of pairs frequently had a member that lacked dorsal setae on its mantle lobe while the other member of the pair formed setae, indicating that the dorsoventral axis had been set up. The process of regional specification in Crania is compared to those of Discinisca and Glottidia in the brachiopod subphylum Linguliformea and Phoronis in the phylum Phoronida.  相似文献   

17.
A monoclonal antibody that recognizes oral ectoderm and esophagus of sea urchin larvae was newly produced. Distribution of the antigen, named Hpoe, was examined by indirect immunofluorescence microscopy. Hpoe did not exist in eggs and appeared during the cleavage stage. In hatched blastulae, Hpoe was detected on the apical surface of all cells. As embryogenesis progressed, Hpoe disappeared from the primary mesenchyme, archenteron and aboral ectoderm. Hpoe reappeared in foregut at the prism stage and was restricted to the oral ectoderm and esophagus at the pluteus stage. Using this antigen as a molecular marker of oral/aboral ectoderm differentiation, the role of the vegetal hemisphere in ectoderm differentiation was examined. All animal hemispheres isolated from 16-cell stage embryos, mesenchyme blastulae, early gastrulae and mid gastrulae developed into epithelial balls and every cell expressed Hpoe. These epithelial balls failed in oral/aboral ectoderm differentiation. Twenty millimolar LiCI-treated whole embryos developed into exo-gastrulae but Hpoe restriction in ectoderm occurred in these exo-gastrulae. These results show that oral/aboral ectoderm differentiation requires an inductive interaction from the vegetal hemisphere and indicate that the inductive interaction depends on a planar or secretory signal, rather than the contact of the esophagus and ectoderm.  相似文献   

18.
19.
Three germ cell layers, the ectoderm, mesoderm and endoderm, are established during the gastrulation stage. All cell types in different organs and tissues are derived from these 3 germ cell layers at later stages. For example, skin epithelial cells and neuronal cells are derived from the ectoderm, while endothelial cells and muscle cells from the mesoderm and lung, and intestine epithelial cells from the endoderm. While in a normal situation different germ cells are destined to specific cell fates in differ...  相似文献   

20.
Summary Blastomeres of two-cell, four-cell, and eight-cell embryos of Hydractinia echinata were injected with horseradish-peroxidase (HRP) or fluorescein isothiocyanate (FITC)-dextran. The fate of the descendants of the injected blastomeres was followed until the planula larva had developed. The results obtained after HRP or FITC-dextran injection were essentially the same. Blastomeres are equivalent up to the four-cell stage, i.e. half-blastomeres produce half of the ectoderm of the planula larva and quarter-blastomeres give rise to one quarter of the larval ectoderm. During normal embryogenesis, the larval anterior-posterior axis corresponds to the animal-vegetal axis of the zygote. Thus, the labelled areas of larvae consisting of the progeny of injected half or quarter blastomeres normally stretch along the larval anterior-posterior axis. Normally, material giving rise to anterior or posterior larval parts, respectively, is separated at the third cleavage. Irrespective of the type of experiment, the progeny of injected blastomeres always contributed to endoderm formation, i.e. in larvae resulting from injected embryos the endoderm was more or less uniformly labelled. Application of vital stains locally to the exterior of zygotes and following these markers through first and second cleavage, produced evidence that in the vast majority of cases, the second cleavage is meridional. Offprint requests to: A. Schlawny  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号