首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parker, James C., and Claire L. Ivey.Isoproterenol attenuates high vascular pressure-inducedpermeability increases in isolated rat lungs. J. Appl.Physiol. 83(6): 1962-1967, 1997.To separate thecontributions of cellular and basement membrane components of thealveolar capillary barrier to the increased microvascular permeabilityinduced by high pulmonary venous pressures (Ppv), we subjected isolatedrat lungs to increases in Ppv, which increased capillary filtrationcoefficient(Kfc) withoutsignificant hemorrhage (31 cmH2O)and with obvious extravasation of red blood cells (43 cmH2O). Isoproterenol (20 µM)was infused in one group (Iso) to identify a reversible cellularcomponent of injury, and residual blood volumes were measured to assessextravasation of red blood cells through ruptured basement membranes.In untreated lungs (High Ppv group),Kfc increased 6.2 ± 1.3 and 38.3 ± 15.2 times baseline during the 31 and 43 cmH2O Ppv states. In Iso lungs, Kfc was 36.2%(P < 0.05) and 64.3% of that in theHigh Ppv group at these Ppv states. Residual blood volumes calculatedfrom tissue hemoglobin contents were significantly increased by53-66% in the high Ppv groups, compared with low vascularpressure controls, but there was no significant difference between HighPpv and Iso groups. Thus isoproterenol significantly attenuatedvascular pressure-induced Kfc increases atmoderate Ppv, possibly because of an endothelial effect, but it did notaffect red cell extravasation at higher vascular pressures.

  相似文献   

2.
3.
4.
We tested the hypothesis that overstretching the myocardium could induce and/or exacerbate contractile dysfunction via stretch-activated (SA) ion channels. Maximum developed tension (T(max)), normalized to a control value, was compared in guinea pig papillary muscles held at one of three resting lengths (physiological stretch, overstretch, and unloaded) for 85 min. Overstretched muscles exhibited decreased contractile force (T(max) = 0.77 +/- 0.03) compared with physiological and unloaded muscles (T(max) = 0.93 +/- 0.05 and 1.03 +/- 0.07, respectively). Gd(3+), an SA channel antagonist, eliminated the adverse effect of overstretching (T(max) = 0.98 +/- 0.06), but nifedipine, a dihydropyridine (DHP) antagonist of L-type calcium channels, did not (T(max) = 0.82 +/- 0.04). Exposure to modified hypoxia-reoxygenation (MHR) during physiological stretch resulted in decreased contractility (T(max) = 0.63 +/- 0.07), an effect that was exacerbated by overstretching (T(max) = 0.44 +/- 0.04). Gd(3+) mitigated the effects of overstretch during MHR (T(max) = 0.64 +/- 0.05), but DHP did not (T(max) = 0.48 +/- 0.04). These data suggest that overstretching of the myocardium contributes to contractile abnormalities via SA channels that are distinct from L-type calcium channels.  相似文献   

5.
Oxidative stress acutely increases the permeability of the vascular endothelium to large molecules that would not otherwise cross the barrier. Ascorbic acid is an antioxidant that tightens the endothelial permeability barrier, so we tested whether it might also prevent the increase in endothelial permeability due to cellular oxidative stress. Treatment of EA.hy926 endothelial cells cultured on filter inserts with H(2) O(2) , menadione, and buthionine sulfoximine increased endothelial permeability to radiolabeled inulin. Short-term ascorbate loading of the cells to what are likely physiologic concentrations of the vitamin by treating them with dehydroascorbate prevented the increase in endothelial permeability due to these agents. The nonphysiologic antioxidants dithiothreitol and tempol also prevented increases in endothelial barrier permeability induced by the agents. These results suggest that oxidative stress induced directly by oxidants or indirectly by glutathione depletion impairs endothelial barrier function and that intracellular ascorbate may serve to prevent this effect.  相似文献   

6.
7.
8.
The effect of cyclooxygenase inhibition in phorbol myristate acetate (PMA)-induced acute lung injury was studied in isolated constant-flow blood-perfused rabbit lungs. PMA caused a 51% increase in pulmonary arterial pressure (localized in the arterial and middle segments as measured by vascular occlusion pressures), a 71% increase in microvascular permeability (measured by the microvascular fluid filtration coefficient, Kf), and a nearly threefold increase in perfusate thromboxane (Tx) B2 levels. Cyclooxygenase inhibition with three chemically dissimilar inhibitors, indomethacin (10(-7) and 10(-6) M), meclofenamate (10(-6) M), and ibuprofen (10(-5) M), prevented the Kf increase without affecting the pulmonary arterial pressure increase or resistance distribution changes after PMA administration. The specific role of TxA2 was investigated by pretreatment with OKY-046, a specific Tx synthase inhibitor, or infusion of SQ 29548, a TxA2 receptor antagonist; both compounds failed to protect against either the PMA-induced permeability or the vascular resistance increase. These results indicate that cyclooxygenase-mediated products of arachidonic acid other than TxA2 mediate the PMA-induced permeability increase but not the hypertension.  相似文献   

9.
Parker, James C., Ellen C. Breen, and John B. West.High vascular and airway pressures increase interstitial protein mRNA expression in isolated rat lungs. J. Appl.Physiol. 83(5): 1697-1705, 1997.We hypothesizedthat wall stresses produced by high peak airway (Paw) and venous (Ppv)pressures would increase mRNA levels for structural proteins of theinterstitial matrix in isolated rat lungs. Groups of lungs(n = 6) were perfused for 4 h at apeak Paw of 35 cmH2O (HiPaw),cyclical peak Ppv of 28 cmH2O(HiPv), or baseline vascular and airway pressures (LoPress). In twoseparate groups, comparable peak pressures increased capillary filtration coefficient fourfold in each group. Northern blots wereprobed for mRNA of 1(I),1(III), and2(IV) procollagen chains,laminin B chain, fibronectin, and transforming growth factor-1, and densities werenormalized to 18S rRNA. mRNA was significantly higher in the HiPv groupfor type I (4.3-fold) and type III (3.8-fold) procollagen and laminin Bchain (4.8-fold) and in the HiPaw group for type I (2.4-fold) and typeIV (4.5-fold) procollagen and laminin B chain (2.3-fold) than in theLoPress group. Only fibronectin mRNA was significantly increased(3.9-fold) in the LoPress group relative to unperfused lungs. Estimatedwall stresses were highest for alveolar septa in the HiPaw group and for capillaries in the HiPv group. The different patterns of mRNA expression are attributed to different regional stresses or extent ofinjury.

  相似文献   

10.
Tumor necrosis factor-alpha (TNF-alpha) causes pulmonary hypertension and arterial hypoxemia, but the mechanisms are unknown. We conducted two experiments to test the hypothesis that TNF-alpha alters pulmonary vascular reactivity, which in turn could cause either pulmonary hypertension or arterial hypoxemia. In experiment 1, rats were given acute or long-term injections of TNF-alpha (recombinant human) in vivo. Rats treated acutely received either saline or TNF-alpha (40 micrograms/kg iv in saline) 3 min (TNF-3 min; n = 8), 20 min (TNF-20 min; n = 8), or 24 h (TNF-24 h; n = 5) before the lungs were isolated. Rats treated chronically received injections of either saline or TNF-alpha (250 micrograms/kg ip in saline) two times per day for 7 days (TNF-7 days; n = 9). Lungs were isolated and perfused with Earle's salt solution (+2 g/l NaHCO3 + 4 g/100 ml Ficoll), and vascular reactivity was tested with acute hypoxia (3 min; 3% O2) and angiotensin II (ANG II; 0.025-0.40 micrograms). Pulmonary pressor responses to hypoxia were greater (P less than 0.05) in TNF-20 min and TNF-7 day groups. ANG II responses were increased (P less than 0.05) in TNF-7 day rats. In experiment 2, lungs were isolated and perfused and received direct pulmonary arterial injections of TNF-alpha (0.2, 2.0, and 20 micrograms) or saline, after stable responses to hypoxia and ANG II (0.10 microgram) were attained. Reactivity was not different between control and TNF-alpha rats before the injections, but TNF-alpha increased (P less than 0.05) responses to hypoxia and ANG II.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We previously reported that the cytosolic phospholipase A(2) (cPLA2) pathway is involved in ventilator-induced lung injury (VILI) produced by high peak inflation pressures (PIP) (J Appl Physiol 98: 1264-1271, 2005), but the relative contributions of the various downstream products of cPLA2 on the acute permeability response were not determined. Therefore, we investigated the role of cPLA2 and the downstream products of arachidonic acid metabolism in the high-PIP ventilation-induced increase in vascular permeability. We perfused isolated mouse lungs and measured the capillary filtration coefficient (K(fc)) after 30 min of ventilation with 9, 25, and 35 cmH2O PIP. In high-PIP-ventilated lungs, K(fc) increased significantly, 2.7-fold, after ventilation with 35 cmH2O PIP compared with paired baseline values and low-PIP-ventilated lungs. Also, increased phosphorylation of lung cPLA2 suggested enzyme activation after high-PIP ventilation. However, treatment with 40 mg/kg arachidonyl trifluoromethyl ketone (an inhibitor of cPLA2) or a combination of 30 microM ibuprofen [a cyclooxygenase (COX) inhibitor], 100 microM nordihydroguaiaretic acid [a lipoxygenase (LOX) inhibitor], and 10 microM 17-octadecynoic acid (a cytochrome P-450 epoxygenase inhibitor) prevented the high-PIP-induced increase in K(fc). Combinations of the inhibitors of COX, LOX, or cytochrome P-450 epoxygenase did not prevent significant increases in K(fc), even though bronchoalveolar lavage levels of the COX or LOX products were significantly reduced. These results suggest that multiple mediators from each pathway contribute to the acute ventilator-induced permeability increase in isolated mouse lungs by mutual potentiation.  相似文献   

12.
The response of segmental filtration coefficients (Kf) to high peak inflation pressure (PIP) injury was determined in isolated perfused rat lungs. Total (K f,t ), arterial (K f,a ), and venous (K f,v ) filtration coefficients were measured under baseline conditions and after ventilation with 40-45 cmH(2)O PIP. K f,a and K f,v were measured under zone I conditions by increasing airway pressure to 25-27 cmH(2)O. The microvascular segment K f (K f,mv ) was then calculated by: K f,mv = K f,t - K f,a - K f,v. The baseline K f,t was 0.090 +/- 0.022 ml. min(-1). cm H2O(-1). 100 g(-1) and segmentally distributed 18% arterial, 41% venous, and 41% microvascular. After high PIP injury, K f,t increased by 680%, whereas K f,a, K f,v, and K f,mv increased by 398, 589, and 975%, respectively. Pretreatment with 50 microM gadolinium chloride prevented the high PIP-induced increase in K f in all vascular segments. These data imply a lower hydraulic conductance for microvascular endothelium due to its large surface area and a gadolinium-sensitive high-PIP injury, produced in both alveolar and extra-alveolar vessel segments.  相似文献   

13.
Airway hyperresponsiveness (AHR) is a hallmark of bronchial asthma. Important features of this exaggerated response to bronchoconstrictive stimuli have mostly been investigated in vivo in intact animals or in vitro in isolated tracheal or bronchial tissues. Both approaches have important advantages but also certain limitations. Therefore, the aim of our study was to develop an ex vivo model of isolated lungs from sensitized mice for the investigation of airway responsiveness (AR). BALB/c mice were sensitized by intraperitoneal ovalbumin (Ova) and subsequently challenged by Ova inhalation. In vivo AR was measured in unrestrained animals by whole body plethysmography after stimulation with aerosolized methacholine (MCh) with determination of enhanced pause (P(enh)). Twenty-four hours after each P(enh) measurement, airway resistance was continuously registered in isolated, perfused, and ventilated lungs on stimulation with inhaled or intravascular MCh or nebulized Ova. In a subset of experiments, in vivo AR was additionally measured in orotracheally intubated, spontaneously breathing mice 24 h after P(enh) measurement, and lungs were isolated further 24 h later. Isolated lungs of allergen-sensitized and -challenged mice showed increased AR after MCh inhalation or infusion as well as after specific provocation with aerosolized allergen. AR was increased on days 2 and 5 after Ova challenge and had returned to baseline on day 9. AHR in isolated lungs after aerosolized or intravascular MCh strongly correlated with in vivo AR. Pretreatment of isolated lungs with the beta(2)-agonist fenoterol diminished AR. In conclusion, this model provides new opportunities to investigate mechanisms of AHR as well as pharmacological interventions on an intact organ level.  相似文献   

14.
15.
High peak inspiratory pressures (PIP) during mechanical ventilation can induce lung injury. In the present study we compare the respective roles of high tidal volume with high PIP in intact immature rabbits to determine whether the increase in capillary permeability is the result of overdistension of the lung or direct pressure effects. New Zealand White rabbits were assigned to one of three protocols, which produced different degrees of inspiratory volume limitation: intact closed-chest animals (CC), closed-chest animals with a full-body plaster cast (C), and isolated excised lungs (IL). The intact animals were ventilated at 15, 30, or 45 cmH2O PIP for 1 h, and the lungs of the CC and C groups were placed in an isolated lung perfusion system. Microvascular permeability was evaluated using the capillary filtration coefficient (Kfc). Base-line Kfc for isolated lungs before ventilation was 0.33 +/- 0.31 ml.min-1.cmH2O-1.100g-1 and was not different from the Kfc in the CC group ventilated with 15 cmH2O PIP. Kfc increased by 850% after ventilation with only 15 cmH2O PIP in the unrestricted IL group, and in the CC group Kfc increased by 31% after 30 cmH2O PIP and 430% after 45 cmH2O PIP. Inspiratory volume limitation by the plaster cast in the C group prevented any significant increase in Kfc at the PIP values used. These data indicate that volume distension of the lung rather than high PIP per se produces microvascular damage in the immature rabbit lung.  相似文献   

16.
利用兔离体肺灌流模型评价肺微小血管通透性   总被引:2,自引:0,他引:2  
目的准确、定量的评价肺微小血管通透性.方法利用兔离体肺灌流模型,采用肺重量分析法测定肺毛细血管滤过系数(Kf).结果肺毛细血管滤过系数测定值为4.78±0.73mg·min-1.cmH2O-1·g-1.结论这种利用离体肺灌流模型定量评价肺微小血管通透性的方法具有直接、测定准确的优点,对于了解肺的生理状态、评价急性肺损伤和肺水肿程度具有重要意义,是一种新型的实验方法.  相似文献   

17.
18.
19.
Ozone increases the permeability of isolated pea chloroplasts   总被引:2,自引:0,他引:2  
The effect of short-term exposure of chloroplasts isolated from the leaves of Pisum sativum to high concentrations of ozone was examined. The inhibitory effect of O3 on endogenous photophosphorylation was apparently related to an increased permeability of the chloroplast limiting membranes induced by ozone exposure. A 5 min treatment with 50 ppm O3 reduced the reflection coefficient of meso-erythritol from 0.84 to 0.58 and that of glycerol from 0.26 to 0.03. Such decreases in reflection coefficients indicate that ozone caused a marked increase in the permeability of the limiting membranes of the chloroplasts, which may result from an oxidation of membrane lipids. The decrease in the reflection coefficient of meso-erythritol was proportional both to ozone concentration (up to 30 ppm for 5 min of bubbling) and to time (up to 5 min at 30 ppm). Extrapolating these results to lower concentrations and longer times, ozone injury should be possible for a 2 hr exposure of plants to 0.3 ppm ozone, as is indeed the case.  相似文献   

20.
Changes in pulmonary hemodynamics have been shown to alter the mechanical properties of the lungs, but the exact mechanisms are not clear. We therefore investigated the effects of alterations in pulmonary vascular pressure and flow (Q(p)) on the mechanical properties of the airways and the parenchyma by varying these parameters independently in three groups of isolated perfused normal rat lungs. The pulmonary capillary pressure (Pc(est)), estimated from the pulmonary arterial (Ppa) and left atrial pressure (Pla), was increased at constant Q(p) (n = 7), or Q(p) was changed at Pc(est) = 10 mmHg (n = 7) and at Pc(est) = 20 mmHg (n = 6). In each condition, the airway resistance (Raw) and parenchymal damping (G) and elastance (H) were identified from the low-frequency pulmonary input impedance spectra. The results of measurements made under isogravimetric conditions were analyzed. The changes observed in the mechanical parameters were consistent with an altered Pla: monotonous increases in Raw were observed with increasing Pla, whereas G and H were minimal at Pla of approximately 7-10 mmHg and increased at lower and higher Pla. The results indicate that Pla, and not Ppa or Q(p), is the primary determinant of the mechanical condition of the lungs after acute changes in pulmonary hemodynamics: the parenchymal mechanics are impaired if Pla is lower or higher than physiological, whereas airway narrowing occurs at high Pla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号