首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructure of detergent-resistant cytoskeletons in the noncortical cytoplasm of sea urchin eggs was studied by quick-freeze, deep-etch electron microscopy. Two different cytoskeletal organizations were identified in the detergent-treated sea urchin eggs. They were distinguished by the presence or the absence of long actin filaments and probably correspond to the cortex and the noncortical cytoplasm, respectively. The non-cortical cytoplasm was composed of a complex network (designated here as the ground network) of filaments 6 to 13 nm in diameter, that interconnected aggregates of small globular materials, yolk granules and a meshwork of uniform filaments (8-9 nm in diameter). The 6 to 13 nm filaments comprising the ground network were branched and associated with filaments of the same or other sizes, resulting in the formation of an extremely complex network. The meshwork of 8-9 nm filaments was homogeneous in composition and constitutes a novel structure which has not been previously described. The 8-9 nm filaments were connected to one another at their ends, forming a meshwork of polygons. Meshworks, ranging up to 3 microns in diameter, were distributed throughout the non-cortical cytoplasm of the egg. Similar cytoplasmic structures were also observed in fertilized eggs.  相似文献   

2.
We used post-embedding immunocytochemical techniques and affinity-purified anti-actin antibody to evaluate localization of actin in epithelial cells of small intestine by fluorescence and electron microscopy. Small intestine was fixed with 2% formaldehyde-0.1% glutaraldehyde and embedded in Lowicryl K4M. One-micron or thin sections were stained with antibody followed by rhodamine- or colloidal gold-labeled goat anti-rabbit IgG, respectively. Label was present overlying microvilli, the apical terminal web, and the cytoplasm directly adjacent to occluding and intermediate junctions. Label was associated with outer mitochondrial membranes of all cells and the supranuclear Golgi region of goblet cells. Lateral cytoplasmic interdigitations between mature cells and subplasmalemmal filaments next to intrusive cells were densely labeled. The cytoplasm adjacent to unplicated domains of lateral membrane was focally labeled. Label was prominent over organized filament bundles within the subplasmalemmal web at the base of mature cells, whereas there was focal labeling of the cytoplasm adjacent to the basal membrane of undifferentiated cells. Basolateral epithelial cell processes were labeled. Label was focally present overlying the cellular ground substance. Our results demonstrate that actin is distributed in a distinctive fashion within intestinal epithelial cells. This distribution suggests that in addition to its function as a structural protein, actin may participate in regulation of epithelial tight junction permeability, in motile processes including migration of cells from the crypt to the villus tip, in accommodation of intrusive intraepithelial cells and in adhesion of cells to one another and to their substratum.  相似文献   

3.
The cytoplasmic structure of Sertoli cells of rat testes has been studied by electron microscopy of ultrathin sections. Sertoli cells contain numerous intermediate-sized (7-11 nm) filaments which form a meshwork extending throughout the whole cytoplasm. Often the frequency of such filaments appears especially high in juxtanuclear and cortical regions, including the apical recesses containing the spermatids. Examination of frozen sections of testes by indirect immunofluorescence microscopy using guinea pig antibodies to prekeratin and vimentin has shown the absence of intermediate-sized filaments of the cytokeratin type in all cells of the testes but the presence of filaments of the vimentin type in Sertoli cells as well as in cells of the interstitial space. These results show that the intermediate-sized filaments, abundant in Sertoli cells, are of the vimentin type. In addition we conclude that the "germ epithelium" differs from others true epithelia by the absence of cytokeratin filaments and typical desmosomes and, in Sertoli cells, the presence of vimentin filaments, suggestive of a mesenchymal character or derivation.  相似文献   

4.
This study evaluates the structural organization of the cytoskeleton within unactivated, discoid platelets. Previously, such studies have been difficult to interpret because of the ease with which platelets are stimulated, the sensitivity of actin filaments to cell extraction buffers, and the general problem of preserving actin filaments with conventional fixatives, compounded by the density of the cytoplasm in the platelet. In this study we have employed a new fixative containing lysine, which protects actin filaments against damage during fixation and thin-section processing. We used thick (0.25-micron) sections and conventional thin sections of extracted cells (fixed and lysed simultaneously by the addition of 1% Triton X-100 to the initial fixative) as well as thin sections of whole cells to examine three preparations of human platelets: discoid platelets washed by sedimentation; discoid platelets isolated by gel filtration; and circulating platelets collected by dripping blood directly from a vein into fixative. In all of these preparations, long, interwoven actin filaments were observed within the platelet and were particularly concentrated beneath the plasma membrane. These filaments appeared to be linked at irregular intervals to the membrane and to each other via short, approximately 20- to 50-nm-long cross-links of variable width. Although most filaments were outside the circumferential band of microtubules and the cisternae of the open canalicular system, individual filaments dipped down into the cytoplasm and were found between the microtubules and in association with other membranes. The ease with which single actin filaments can be seen in the dense cytoplasm of the human platelet after lysine/aldehyde fixation suggests the great potential of this new fixative for other cells.  相似文献   

5.
With the techniques used in this study, the nucleoid of Streptococcus faecalis could not be seen in freeze-etch preparations unless glutaraldehyde had been added to cultures of cells before they were frozen. With time, the nucleoid became visible as a network of fibers, apparently as a result of the aggregation of individual chromosomal elements in the presence of glutaraldehyde. When glutaraldehyde was added to undisturbed cultures, the fibers that became visible were observed in small patches that were seemingly scattered throughout the cytoplasm. However, if cells were chilled or placed on filters before glutaraldehyde was added, the fibers which then developed were seen in large central areas. The appearance of centralized nucleoids in freeze fractures of cells that had been chilled or filtered could be correlated with a decrease in the central density of the cytoplasm, as seen by light microscopy, in cells embedded in gelatin or bovine serum albumin. These observations are discussed in relation to a model for the normal structure of the nucleoid which suggests that the treatments routinely used to study the morphology-physiology of cells (chilling, filtration, and fixation) result in a reorganization of the cytoplasm, leading to an increase in the centralization of nuclear material.  相似文献   

6.
The survival at sub-zero temperatures of leaf blade cells of rye ( Secale cereale L. cv. Voima), which had not been cold acclimated, was determined by measuring the efflux of ninhydrin-positive substances: 50% of the cells were dead at −4°C (LT50) and none survived at −12°C or below. Examination of ultrastructural changes during cold hardening and freezing injury requires frozen tissues prepared for transmission electron microscopy without thawing. Specimens were prepared from leaf blade segments at room temperature, −4°C or −12°C by plunge freezing at 3 m s−1 into a cooling medium at −170°C followed by freeze-substitution in acetone with OsO4 fixation. Comparisons of room temperature specimens were made with those prepared by chemical fixation using glutaraldehyde/paraformaldehyde/tannic acid. On freezing to −12°C, the cells were severely dehydrated and distorted, the vacuoles severely shrunken and the cytoplasm and mitochondria disorganized whereas the chloroplasts were little affected. On freezing to −4°C, some cells were as disorganized as those at −12°C, others were relatively intact, and some showed evidence of intracellular ice crystal formation.  相似文献   

7.
The anterior byssal retractor muscle (ABRM) of a bivalve mollusc Mytilus edulis is known to exhibit catch state, i.e. a prolonged tonic contraction maintained with very little energy expenditure. Two different hypotheses have been put forward concerning the catch state; one assumes actin-myosin linkages between the thick and thin filaments that dissociate extremely slowly (linkage hypothesis), while the other postulates a load-bearing structure other than actin-myosin linkages (parallel hypothesis). We explored the possible load-bearing structure responsible for the catch state by examining the arrangement of the thick and thin filaments within the ABRM fibers, using techniques of quick freezing and freeze substitution. No thick filament aggregation was observed in the cross-section of the fibers quickly frozen not only in the relaxed and actively contracting states but also in the catch state. The thick filaments were, however, occasionally interconnected with each other either directly or by distinct projections in all the three states studied. The proportion of the interconnected thick filaments relative to the total thick filaments in a given cross-sectional area was much larger in the catch state than in the relaxed and actively contracting states, providing evidence that the thick filament interconnection is responsible for the catch state.  相似文献   

8.
Summary Several recent studies comparing chemically fixed and cryofixed endothelium have indicated that glutaraldehyde fixation may result in increases in the population of vesicles in the cytoplasm. Other reports based on ultrathin serial-section reconstruction of chemically fixed endothelium have revealed that the vesicular system is comprised of interconnected membranous compartments, which are ultimately continuous with either cell surface but do not extend across the endothelial cell. In this study, we have investigated the three-dimensional organization of the vesicular system in directly frozen, freeze-substituted capillaries of the rete mirabile from the swim bladder of the eel, specifically using the same block of embedded capillaries in which frozen capillaries had previously been found to contain less vesicles than chemically fixed capillaries. The results show that essentially all vesicles remain inter-connected with each other and are part of two separate sets of invaginations from the luminal and abluminal cell surface like in chemically fixed tissue. Any increase in vesicle number resulting from glutaraldehyde fixation does not affect the overall three-dimensional organization of the vesicular system in these endothelial cells.  相似文献   

9.
The parabronchi of the Adelie penguin are endowed with wide atria forming pockets between a loose meshwork of bundles of smooth muscle cells lining the parabronchial lumen. The atrial epithelium is of variable thickness and bears numerous microvilli, which are overlain by/or embedded in sheets or whorls of lamellar material ("trilaminar substance", diameter of one lamella 8 ..10 nm) forming layers of very variable thickness. The cells contain either stacks or whorls of this material or roundish lamellated bodies, and are interconnected by desmosomal contacts as well as what presumably represent tight junctions. Underneath the epithelium and within the bundles of muscle cells regularly nerve fibres have been found. The diameter of the morphological air/blood barrier is about 165...210 nm in thin areas, excluding a 12...20 nm thick layer covering the luminal plasma membrane of the air capillary epithelium. The blood capillary endothelium ordinarily is markedly thicker (40...250 nm) than the air capillary epithelium (17...25 nm). The basal lamina between endo- and epithelium is a uniform structure measuring about 95...105 nm. The endothelial cells are interconnected by desmosomal and probably tight junctions.  相似文献   

10.
Whole-mount stereo electron microscopy has been used to examine the cytoskeletal organization of the presynaptic nerve terminal and the acetylcholine receptor (AChR) clusters in cultures of Xenopus nerve and muscle cells. The cells were grown on Formvar-coated gold electron microscope (EM) finder grids. AChR clusters were identified in live cultures by fluorescence microscopy after labeling with tetramethylrhodamine-conjugated alpha-bungarotoxin. After chemical fixation and critical-point drying, the cytoplasmic specializations of identified cells were examined in whole mount under an electron microscope. In the presynaptic nerve terminal opposite to the AChR cluster, synaptic vesicles were clearly suspended in a lattice of 5-12- nm filaments. Stereo microscopy showed that these filaments directly contacted the vesicles. This lattice was also contiguous with the filament bundle that formed the core of the axon. At the AChR cluster, an increased cytoplasmic density differentiated this area from the rest of the cytoplasm. This density was composed of a meshwork of filaments with a mean diameter of 6 nm and irregularly shaped membrane cisternae 0.1-0.5 micron in width, which resembled the smooth endoplasmic reticulum. These membrane structures were interconnected via the filaments. Organelles that were characteristic of the bulk of the sarcoplasm such as the rough endoplasmic reticulum and the polysomes, were absent from the cytoplasm associated with the AChR cluster. These results indicate that the cytoskeleton may play an important role in the development and/or the maintenance of the neuromuscular synapse, including the release of transmitter in the nerve terminal and the clustering of AChRs in the postsynaptic membrane.  相似文献   

11.
Joseph A. Grasso 《Cell》1980,20(3):885-887
We have utilized a cracking procedure followed by a rotary shadow technique to examine the ultrastructure of cultured ovarian granulosa cells. We have demonstrated that the structures observed are not artifacts of fixation or cracking by generating equivalent images following freezing and deep etching as well as by fixation prior to cracking. The cytoplasm of granulosa cells exhibits a complex cytoskeletal lattice composed of many 40–55 nm filaments. This filamentous network is continuous with the plasma membrane and appears to incorporate all formed elements within the cytoplasm. Filaments are organized in three ways: first, in large bundles, second, in individual filaments that are in direct association with organelles, and third, in a complex branching and anastomosing configuration. S-1 decoration revealed that the predominant filament species is actin.  相似文献   

12.
Further evidence for fibrillar organization of the ground cytoplasm of Chaos chaos is presented. Fixations with osmium tetroxide at pH 6 or 8 and with glutaraldehyde at pH 6 or 7 were used on two preparations: (a) single actively streaming cells; (b) prechilled cells treated with 0.05% Alcian blue in the cold and returned to room temperature for 5–10 min. In addition, a 50,000 g pellet of homogenized cells was examined after fixation with glutaraldehyde-formaldehyde alone. In sections from actively streaming cells considerable numbers of filaments were observed in the uroid regions after glutaraldehyde fixation, whereas only traces of filaments were seen after osmium tetroxide fixation at either pH 6 or 8. Microtubules were not seen. In sections from dye-treated cells, filaments (4–6 mµ) and fibrils (12–15 mµ) were found with all three fixatives. The 50,000 g pellet was heterogeneous but contained both clumps of fibrils and single thick fibrils like those seen in the cytoplasm of dye-treated cells. Many fibrils of the same dimensions (12–15 mµ wide, 0.5 µ long) were also seen in the supernatant above the pellet. Negative staining showed that some fibrils separated into at least three strands of 4–6 mµ filaments.  相似文献   

13.
Evidence for a mitochondrial chromosome in Xenopus laevis oocytes   总被引:1,自引:1,他引:0  
When Xenopus laevis mitochondria are gently lysed at physiologic ionic strength, mitochondrial DNA (mitDNA) is extracted associated with proteins. Sedimentation and buoyant density studies indicate that proteins are bound to mitDNA at a ratio of about 1/1. This DNA-protein complex visualized by electron microscopy after fixation with glutaraldehyde appears as a relaxed circular molecule consisting of an average of 48 globular particles interconnected by a thin filament.  相似文献   

14.
During the past decade, work on whole, critical-point dried animal cells has revealed a three-dimensional meshwork, the microtrabecular lattice or cytomatrix, which pervades the ground cytoplasm. This work was carried out on cells which could be spread out into thin layers on support films. Plant cells provide a more difficult problem since their rigid cell walls do not allow them to be spread into thin layers. Nevertheless high-voltage electron microscopy at up to 2.5 MeV permits examination of whole cells up to 30 μm thick, though both preparation and interpretation present problems. In algal cells flagellar roots and associated structures can be seen in three dimensions, while cells of mosses, ferns and lycopods show a cytomatrix of fine interconnecting filaments.  相似文献   

15.
Cells in secretory glands of globiferous pedicellariae from Strongylocentrotus purpuratus (Stimpson) were studied with the electron microscope and subjected to preliminary light microscopic, histochemical analysis. Specimens for electron microscopic observation were fixed with chilled 2% glutaraldehyde in sea water postfixed in cold 1.33% osmic acid, and embedded in Araldite 502 epoxy resin Samples for histochemical analysis were fixed in the same manner, and then embedded in n-butylmethacrylate. Secretory cells line and fill partially bifurcated, muscular gland sacs located peripherally on each of three jaw elements comprising the pedicellarial head. Cells from venom glands are typically mucoid in appearance, possessing small volumes of basally displaced, vesiculated cytoplasm and an extensive system of vacuoles dominating the apical nine-tenths of each cell. These vacuoles enclose ground substances of various densities and staining affinities. Despite their extensive vacuolation, gland cells contain numerous cytomembrane complexes indicating metabolic activity just prior to fixation. Deciduous endoplasmic reticulum, Golgi complexes, large vacuoles, and various species of vesicles associated with these membrane systems are found in spatial proximity which indicates an apparent biosynthetic association. Preliminary histochemical tests on sections embedded in acrylic plastic indicate vacuolar products may consist of protein and nonsulfated acid mucosubstances. Gland cells are probably holocrine in function, releasing their vacuolar complement upon constriction of the muscular gland sac. There is no evidence indicating delivery of non-membrane bounded, granular secretion to an acellular lumen within the gland sac.  相似文献   

16.
This report presents the appearance of rapidly frozen, freeze-dried cytoskeletons that have been rotary replicated with platinum and viewed in the transmission electron microscope. The resolution of this method is sufficient to visualize individual filaments in the cytoskeleton and to discriminate among actin, microtubules, and intermediate filaments solely by their surface substructure. This identification has been confirmed by specific decoration with antibodies and selective extraction of individual filament types, and correlated with light microscope immunocytochemistry and gel electrophoresis patterns. The freeze-drying preserves a remarkable degree of three-dimensionality in the organization of these cytoskeletons. They look strikingly similar to the meshwork of strands or "microtrabeculae" seen in the cytoplasm of whole cells by high voltage electron microscopy, in that the filaments form a lattice of the same configutation and with the same proportions of open area as the microtrabeculae seen in whole cells. The major differences between these two views of the structural elements of the cytoplasmic matrix can be attributed to the effects of aldehyde fixation and dehydration. Freeze-dried cytoskeletons thus provide an opportunity to study--at high resolution and in the absence of problems caused by chemical fixation--the detailed organization of filaments in different regions of the cytoplasm and at different stages of cell development. In this report the pattern of actin and intermediate filament organization in various regions of fully spread mouse fibroblasts is described.  相似文献   

17.
In the preceding paper (Kobayashi, T., S. Tsukita, S. Tsukita, Y. Yamamoto, and G. Matsumoto, 1986, J. Cell Biol., 102:1710-1725), we demonstrated biochemically that the subaxolemmal cytoskeleton of the squid giant axon was highly specialized and mainly composed of tubulin, actin, axolinin, and a 255-kD protein. In this paper, we analyzed morphologically the molecular organization of the subaxolemmal cytoskeleton in situ. For thin section electron microscopy, the subaxolemmal cytoskeleton was chemically fixed by the intraaxonal perfusion of the fixative containing tannic acid. With this fixation method, the ultrastructural integrity was well preserved. For freeze-etch replica electron microscopy, the intraaxonally perfused axon was opened and rapidly frozen by touching its inner surface against a cooled copper block (4 degrees K), thus permitting the direct stereoscopic observation of the cytoplasmic surface of the axolemma. Using these techniques, it became clear that the major constituents of the subaxolemmal cytoskeleton were microfilaments and microtubules. The microfilaments were observed to be associated with the axolemma through a specialized meshwork of thin strands, forming spot-like clusters just beneath the axolemma. These filaments were decorated with heavy meromyosin showing a characteristic arrowhead appearance. The microtubules were seen to run parallel to the axolemma and embedded in the fine three-dimensional meshwork of thin strands. In vitro observations of the aggregates of axolinin and immunoelectron microscopic analysis showed that this fine meshwork around microtubules mainly consisted of axolinin. Some microtubules grazed along the axolemma and associated laterally with it through slender strands. Therefore, we were led to conclude that the axolemma of the squid giant axon was specialized into two domains (microtubule- and microfilament-associated domains) by its underlying cytoskeletons.  相似文献   

18.
Previous attempts to determine the distribution of ice in frozen tissues at high sub-zero temperatures generally called for the further cooling of the tissues in question to facilitate freeze-drying, freeze-substitution, and freeze-fracture replication. Direct cryomicroscopic determinations, free from uncertainties stemming from changes in sample temperature could, it seemed, only be made in certain special cases. We have presented an isothermal “freeze-fixation” procedure designed to permit, instead, the postthaw retention of the freezing pattern and the conventional processing, afterward, of the thawed specimen. The method demands the exposure of the frozen tissues to fixative solutions incapable of dissolving ice. Frozen specimens are immersed in aqueous fixative solutions prepared in each instance (1) to freeze at a temperature equal to that at which fixation is to be conducted, (2) to contain quantities of finely divided ice sufficient to guarantee the maintenance of a constant water activity. Frozen frog and rat hearts and skeletal muscle tissues were exposed to formaldehyde, formaldehyde/ glutaraldehyde, and glutaraldehyde solutions at ?2, ?5, and ?10 °C, the temperatures being maintained in each case to ± 0.1 °C, or better. Tissues withdrawn at intervals were thawed, postfixed, dehydrated, embedded, and sectioned. The sections demonstrated the retention, after thawing, of structural features characteristic of the frozen state. The small hearts we exposed to formaldehyde were fixed throughout in 3 hr at ?2 ° and in 20 hr at ?5 °C. The action of osmium tetroxide was investigated. The method appears to be well-suited to numerous experimental applications.  相似文献   

19.
Different fixation and embedding procedures have been tested in order to facilitate closterovirus identification on thin sections of leafroll-affected grapevine plants. Standard fixation with glutaraldehyde followed by osmium tetroxide proved to be the most reliable for cytopathological studies while simultaneous fixation with glutaraldehyde, picric acid and osmium tetroxide facilitated the discrimination between aggregates of P-proteins and virus particles in routine e. m. work. However the identification of every single virion among P-protein filaments was only possible by means of post-embedding immunogold labelling carried out on non-osmicated tissues embedded in London Resin White. This technique has also been applied to both section sides thus allowing the identification of different closteroviruses contemporaneously present in the same phloem tissue. Numerous ultrastructural observations of different grapevine cultivars infected with either GVA, or GLRaV-I or GLRaV-III evidentiated the presence of some recurrent and peculiar cytopathic effects that can be used as diagnostic parameters for at least two of the above viruses.  相似文献   

20.
Involucrin immunoreactivity was localized ultrastructurally with protein A--gold in epidermis and cultured keratinocytes embedded in Lowicryl K4M. In the skin, immunoreactivity was found predominantly in cells of the granular layer and inner stratum corneum. The label was associated primarily with amorphous cytoplasmic material and especially keratohyaline granules. Some labeling was observed at the cell periphery, but little with keratin filaments. Tissue samples examined without aldehyde fixation showed relatively greater labeling in the outer stratum corneum than fixed tissue. In cultured cells, the labeling was also associated primarily with cytoplasmic granular material and to a lesser extent with the cell periphery. Upon treatment with the ionophore X537A, keratin filaments were found in aggregated arrays and the plasma membranes became convoluted. That involucrin immunoreactivity persisted in the cytoplasm in cultured cells and in vivo after cross-linking occurs could account for considerable isopeptide bonding detected in epidermal keratin fractions and indicates that not all the involucrin participates in envelope formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号