共查询到20条相似文献,搜索用时 0 毫秒
1.
Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality 总被引:22,自引:26,他引:22
下载免费PDF全文

The cytoplasmic ground substance of cultured cells prepared for high voltage transmission electron microscopy (glutaraldehyde/osmium fixed, alcohol or acetone dehydrated, critical-point dried) consists of slender (3-6 nm Diam) strands--the microtrabeculae (55)--that form an irregular three-dimensional lattice (the microtrabecular lattice). The microtrabeculae interconnect the membranous and nonmembranous organelles and are confluent with the cortices of the cytoplast. The lattice is found in all portions of the cytoplast of all cultured cells examined. The possibility that the lattice structure is an artifact of specimen preparation has been tested by (a) subjecting whole cultured cells (WI-38, NRK, chick embryo fibroblasts) to various chemical (aldehydes, osmium tetroxide) and nonchemical (freezing) fixation schedules, (b) examination of model systems (erythrocytes, protein solutions), (c) substantiating the relaibility of critical-point drying, and (d) comparing images of whole cells with conventionally prepared (plastic-embedded) cells. The lattice structure is preserved by chemical and nonchemical fixation, though alterations in ultrastructure can occur especially after prolonged exposure to osmium tetroxide. The critical-point method for drying specimens appears to be reliable as is the freeze-drying method. The discrepancies between images of plastic-embedded and sectioned cells, and images of whole, critical-point dried cells appear to be related, in part, to the electron-scattering properties of the embedding resin. The described observations indicate that the microtrabecular lattice seen in electron micrographs closely represents the nonrandom structure of the cytoplasmic ground substance of living cultured cells. 相似文献
2.
Transformations in the structure of the cytoplasmic ground substance in erythrophores during pigment aggregation and dispersion. I. A study using whole-cell preparations in stereo high voltage electron microscopy 总被引:4,自引:16,他引:4
下载免费PDF全文

《The Journal of cell biology》1977,75(2):541-558
Pigment migration in cultured erythrophores of the squirrel fish Holocentrus ascensionis, after manipulation with K+, epinephrine, 3',5'- dibutyryl cyclic adenosine monophosphate, theophylline, and caffeine, is essentially identical to that observed in this chromatophore in situ. For such observations, the erythrophores are dissociated from the scales with hyaluronidase and collagenase, and allowed to spread on an amorphous collagen substrate, where they resemble the discoid erythrophore in situ. In this state, they are readily fixed by glutaraldehyde and osmium tetroxide, and are then critical-point dried for whole-cell viewing in the high voltage electron microscope. The organization and fine structure of the erythrophore cytoplast was stereoscopically examined after fixation of the pigment granules in four experimental states: pigment dispersed, pigment aggregated, pigment aggregating, and pigment dispersing. In the dispersed cell, granules are contained in an extensive three-dimensional lattice composed of radially oriented microtubules and a network of fine filaments 3-6 nm in diameter (microtrabeculae), whereas in the aggregated cell, the microtrabecular system is absent, and the majority of the microtubules appear displaced into the cortices on the cytoplasmic surface of the plasma membrane. In cells fixed while aggregating, few microtrabeculae are observed, although formless thickenings are observed in the cortices, on granules, and between clumped granules. In dispersing cells, the microtrabecular system is reformed from material stored in the cortices and with the granules in the centrosphere. These observations suggest that the granules are suspended in a dynamic microtrabecular system that withdraws during pigment aggregation and is restructured during pigment dispersion. The microtubules guide linear granule motion not by defining physical channels, but by a recognizable affinity of microtubules, microtrabeculae, and granules for one another. 相似文献
3.
4.
Summary Cytoplasmic structure and rates of cyclosis in trichomes from chilling-sensitive watermelon (Citrullus vulgaris L.), tomato (Lycopersicon esculentum Mill.) andEpiscia reptans plants and from chilling-resistant foxglove (Digitalis purpurea) andVeronica persica were examined with differential interference contrast optics (DIC) as the temperature of the microscope stage was lowered. Below the chilling threshold, the rate of streaming in chilling-sensitive species fell markedly. At chilling temperatures the complex network of transvacuolar strands in the cytoplasm disappeared and the cytoplasm became vesiculated. During rewarming of the chilled cells, the vesicles fused into pleiomorphic blebs, which gradually stretched out into fully functional strands. These events were not seen during the chilling and rewarming of chilling-resistant plant cells.Similar inhibition of cyclosis and changes in cytoplasmic structure were observed in cells from all species studied when they were treated with the actin inhibitor, cytochalasin B, or with uncoupling agents. Phalloidin had no detectable effect. Cyclosis in colchicine-, nocodazole-, trifluralin- and IPC-treated cells was not affected for many hours and did not cause the structural changes seen with chilling. The possible role of actin in these low-temperature effects on cytoplasmic structure and function is discussed. 相似文献
5.
Oogenesis in Hydra occurs in so-called egg patches containing several thousand germ cells. Only one oocyte is formed per egg patch; the remaining germ cells differentiate as nurse cells. Whether and how nurse cells contribute cytoplasm to the developing oocyte has been unclear. We have used tissue maceration to characterize the differentiation of oocytes and nurse cells in developing egg patches. We show that nurse cells decrease in size at the same time that developing oocytes increase dramatically in volume. Nurse cells are also tightly attached to oocytes at this stage and confocal images of egg patches stained with the fluorescent membrane dye FM 4-64 clearly show large gaps (10 microm) in the cell membranes separating nurse cells from the developing oocyte. We conclude that nurse cells directly transfer cytoplasm to the developing oocyte. Following this transfer of cytoplasm, nurse cells undergo apoptosis and are phagocytosed by the oocyte. These results demonstrate that basic mechanisms of alimentary oogenesis typical of Caenorhabditis and Drosophila are already present in the early metazoan Hydra. 相似文献
6.
7.
We have identified the three-dimensional ultrastructure of actin gels that are formed in well-characterized cell extracts and mixtures of purified actin and the 120K actin-binding protein and compared these to the ultrastructure of the cytoplasmic matrix in regions of nonextracted Dictyostelium amoebae that are rich in actin and 120K. This ultrastructural characterization was achieved by using critical-point-dried whole-mount preparations. All three preparations--gelled extracts, purified proteins, and cortical cytoplasm--are composed of filament networks. The basic morphological feature of these networks is the presence of contacts between convergent filaments resulting in "T" or "X" shaped contacts. The finding that actin-containing gels are composed of filament networks, where the primary interaction occurs between convergent filaments, reconciles the known requirement of F actin for gelation with the amorphous appearance of these gels in thin sections. Increasing the molar ratio of 120K dimer to actin monomer increases the number of contacts between filaments per unit volume and decreases the lengths of filaments between contacts. This indicates that 120K stabilizes interactions between filaments and is consistent with biochemical evidence that 120K crosslinks actin filaments. The cortical network in situ resembles more closely networks formed in 120K-rich extracts than networks assembled in mixtures of purified 120K and actin. The heterogeneity of filament diameters and variation of network density are properties shared by extracts and the cytomatrix in situ while networks found in purified 120K-actin gels have filament diameters and densities that are more uniform. These differences are certainly due to the more complex composition of cell extracts and cortical cytoplasm as compared to that of purified 120K-actin gels. 相似文献
8.
DURAN-REYNALS F McCREA JF 《Revue canadienne de biologie / éditée par l'Université de Montréal》1953,12(2):262-8; discussion, 268-71
9.
Modulated fringe pattern photobleaching (MFPP) was used to measure the translational diffusion of microinjected fluorescein isothiocyanate (FITC)-labeled proteins of different sizes in the cytoplasm of cultured muscle cells. This technique, which is an extension of the classical fluorescence recovery after photobleaching (FRAP) technique, allows the measurement of the translational diffusion of macromolecules over several microns. Proteins used had molecular masses between 21 and 540 kDa. The results clearly indicated that the diffusivity of the various proteins is a decreasing function of their hydrodynamic radius. This decrease is more rapid with globular proteins than with FITC-labeled dextrans (, Biophys. J. 70:2327-2332), most likely because, unlike globular proteins, dextrans are randomly coiled macromolecules with a flexible structure. These data do not exclude the possibility of a rapid diffusion over a short distance, unobservable with our experimental set-up, which would take place within the first milliseconds after bleaching and would correspond to the diffusion in restricted domains followed by impeded diffusion provoked by the network of microtubules, microfilaments, and intermediate filaments. Thus our results may complement rather than contradict those of Verkman and collaborators (, J. Cell Biol. 138:1-12). The biological consequence of the size-dependent restriction of the mobility of proteins in the cell cytoplasm is that the formation of intracellular complexes with other proteins considerably reduces their mobility. 相似文献
10.
Z Ruben S N Anderson K J Rorig J D Hribar R H Bible 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1985,180(1):84-91
Cellular uptake of disobutamide (D), and clear cytoplasmic vacuoles (CCV) induction by D in cultured rat urinary bladder carcinoma cells were dependent on the culture medium pH. At pH 6.0-6.7, drug uptake was slow and no CCV formed in 24 hr. At pH 7.0-8.0, the rate of D uptake and early appearance of CCV were directly proportional to increased basicity. This was explained by the increasing fraction of un-ionized D molecules at increasing basicity of the culture medium. It is only these electrically neutral D molecules which can penetrate the lipoidal cell membrane to induce formation of CCV. Intracellular presence of D was demonstrated by mass spectrometry methods. The results indicate that D is incorporated intracellularly, that D and not its metabolite(s) is in cells, and suggest that CCV are a result of drug sequesteration. 相似文献
11.
12.
Scrapie prion proteins accumulate in the cytoplasm of persistently infected cultured cells 总被引:26,自引:0,他引:26
下载免费PDF全文

The cellular prion protein (PrPC) is a sialoglycoprotein anchored to the external surface of cells by a glycosyl phosphatidylinositol moiety. During scrapie, an abnormal PrP isoform designated PrPSc accumulates, and much evidence argues that it is a major and necessary component of the infectious prion. Based on the resistance of native PrPSc to proteolysis and to digestion with phosphatidylinositol-specific phospholipase C as well as the enhancement of PrPSc immunoreactivity after denaturation, we devised in situ immunoassays for the detection of PrPSc in cultured cells. Using these immunoassays, we identified the sites of PrPSc accumulation in scrapie-infected cultured cells. We also used these immunoassays to isolate PrPSc-producing clones from a new hamster brain cell line (HaB) and found an excellent correlation between their PrPSc content and prion infectivity titers. In scrapie-infected HaB cells as well as in scrapie-infected mouse neuroblastoma cells, most PrPSc was found to be intracellular and most localized with ligands of the Golgi marker wheat germ agglutinin. In one scrapie-infected HaB clone, PrPSc also localized extensively with MG-160, a protein resident of the medial-Golgi stack whereas this colocalization was not observed in another subclone of these cells. Whether the sites of intracellular accumulation of PrPSc are limited to a few subcellular organelles or they are highly variable remains to be determined. If the intracellular accumulation of PrPSc is found in the cells of the central nervous system, then it might be responsible for the neuronal dysfunction and degeneration which are cardinal features of prion diseases. 相似文献
13.
In continuous lines of cultured Drosophila cells two forms of cytoplasmic actin, designated II and III, are detected after a 25- to 120-min pulse label with [35S]methionine. However, only one of these, actin II, accumulates in the cell. With the use of a pulse-chase protocol and two-dimensional gel electrophoresis, it has been found that actin III is synthesized as a precursor of the more stable cytoplasmic actin II. The half-life of actin III was estimated to be approximately 50 min. 相似文献
14.
15.
16.
17.
An evaluation of methods for studying bone marrow obtained from patients with acute lymphoblastic leukemia indicates that both directly prepared and cultured cells are necessary for complete karyotypic analysis, but that both synchronized and unsynchronized cultures may not be necessary. 相似文献
18.
19.