首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In prokaryotes, the principal signal transduction systems operating at the level of protein phosphorylation are the two-component systems. A number of hybrid histidine protein kinases in these systems contain several receiver domains, however, the function of these receiver domains is unknown. The RodK kinase in Myxococcus xanthus has an unconventional domain composition with a putative N-terminal sensor domain followed by a histidine kinase domain and three receiver domains. RodK is essential for the spatial coupling of the two morphogenetic events underlying fruiting body formation in M. xanthus, aggregation of cells into nascent fruiting bodies and the subsequent sporulation of these cells. RodK kinase activity is indispensable for RodK activity. By systematically substituting the conserved, phosphorylatable aspartate residues in the three receiver domains, genetic evidence is provided that each receiver domain is important for RodK function and that each receiver domain has a distinct function, which depends on phosphorylation. Biochemical analyses provided indirect evidence for phosphotransfer from the RodK kinase domain to the third receiver domain. This is the first example of a hybrid histidine protein kinase in which four signalling domains have been shown to be required for full activity.  相似文献   

2.
Myxococcus xanthus has a complex life cycle that includes fruiting body formation. One of the first stages in development has been called A-signalling. The asg (A-signalling) mutants have been proposed to be deficient in producing A-signal, resulting in development arresting at an early stage. In this paper, we report the identification of a new asg locus asgD. This locus appears to be involved in both environmental sensing and intercellular signalling. Expression of asgD was undetected during vegetative growth, but increased dramatically within 1 h of starvation. The AsgD protein is predicted to contain 773 amino acids and to be part of a two-component regulatory system because it has a receiver domain located at the N-terminus and a histidine protein kinase at the C-terminus. An asgD null mutant was defective in fruiting body formation and sporulation on CF medium. However, the defects of the mutant were complemented extracellularly when cells were mixed with wild-type strains or with bsgA, csgA, dsgA or esgA mutants, but were not complemented extracellularly by asgA, asgB or asgC mutants. In addition, the mutant was rescued by a subset of A-factor amino acids. Surprisingly, when the mutant was plated on stringent starvation medium rather than CF, cells were able to form fruiting bodies. Thus, it appears that AsgD is directly or indirectly involved in sensing nutritionally limiting conditions. The discovery of the asgD locus provides an important sensory transduction component of early development in M. xanthus.  相似文献   

3.
L Plamann  Y Li  B Cantwell    J Mayor 《Journal of bacteriology》1995,177(8):2014-2020
The Myxococcus xanthus asgA gene is one of three known genes necessary for the production of extracellular A-signal, a cell density signal required early in fruiting body development. We determined the DNA sequence of asgA. The deduced 385-amino-acid sequence of AsgA was found to contain two domains: one homologous to the receiver domain of response regulators and the other homologous to the transmitter domain of histidine protein kinases. A kanamycin resistance (Kmr) gene was inserted at various positions within or near the asgA gene to determine the null phenotype. Those strains with the Kmr gene inserted upstream or downstream of asgA are able to form fruiting bodies, while strains containing the Kmr gene inserted within asgA fail to develop. The nature and location of the asgA476 mutation were determined. This mutation causes a leucine-to-proline substitution within a conserved stretch of hydrophobic residues in the N-terminal receiver domain. Cells containing the insertion within asgA and cells containing the asgA476 substitution have similar phenotypes with respect to development, colony color, and expression of an asg-dependent gene. An analysis of expression of a translational asgA-lacZ fusion confirms that asgA is expressed during growth and early development. Finally, we propose that AsgA functions within a signal transduction pathway that is required to sense starvation and to respond with the production of extracellular A-signal.  相似文献   

4.
5.
The fruiting body development of Myxococcus xanthus consists of two separate but interacting pathways: one for aggregation of many cells to form raised mounds and the other for sporulation of individual cells into myxospores. Sporulation of individual cells normally occurs after mound formation, and is delayed at least 30 h after starvation under our laboratory conditions. This suggests that M. xanthus has a mechanism that monitors progress towards aggregation prior to triggering sporulation. A null mutation in a newly identified gene, espA (early sporulation), causes sporulation to occur much earlier compared with the wild type (16 h earlier). In contrast, a null mutation in an adjacent gene, espB, delays sporulation by about 16 h compared with the wild type. Interestingly, it appears that the espA mutant does not require raised mounds for sporulation. Many mutant cells sporulate outside the fruiting bodies. In addition, the mutant can sporulate, without aggregation into raised mounds, under some conditions in which cells normally do not form fruiting bodies. Based on these observations, it is hypothesized that EspA functions as an inhibitor of sporulation during early fruiting body development while cells are aggregating into raised mounds. The aggregation-independent sporulation of the espA mutant still requires starvation and high cell density. The espA and espB genes are expressed as an operon and their translations appear to be coupled. Expression occurs only under developmental conditions and does not occur during vegetative growth or during glycerol-induced sporulation. Sequence analysis of EspA indicates that it is a histidine protein kinase with a fork head-associated (FHA) domain at the N-terminus and a receiver domain at the C-terminus. This suggests that EspA is part of a two-component signal transduction system that regulates the timing of sporulation initiation.  相似文献   

6.
Myxococcus xanthus is a predatory bacterium that exhibits complex social behavior. The most pronounced behavior is the aggregation of cells into raised fruiting body structures in which cells differentiate into stress-resistant spores. In the laboratory, monocultures of M. xanthus at a very high density will reproducibly induce hundreds of randomly localized fruiting bodies when exposed to low nutrient availability and a solid surface. In this report, we analyze how M. xanthus fruiting body development proceeds in a coculture with suitable prey. Our analysis indicates that when prey bacteria are provided as a nutrient source, fruiting body aggregation is more organized, such that fruiting bodies form specifically after a step-down or loss of prey availability, whereas a step-up in prey availability inhibits fruiting body formation. This localization of aggregates occurs independently of the basal nutrient levels tested, indicating that starvation is not required for this process. Analysis of early developmental signaling relA and asgD mutants indicates that they are capable of forming fruiting body aggregates in the presence of prey, demonstrating that the stringent response and A-signal production are surprisingly not required for the initiation of fruiting behavior. However, these strains are still defective in differentiating to spores. We conclude that fruiting body formation does not occur exclusively in response to starvation and propose an alternative model in which multicellular development is driven by the interactions between M. xanthus cells and their cognate prey.  相似文献   

7.
In Myxococcus xanthus the extracellular matrix is essential for type IV pili-dependent motility and starvation-induced fruiting body formation. Proteins of two-component systems including the orphan DNA binding response regulator DigR are essential in regulating the composition of the extracellular matrix. We identify the orphan hybrid histidine kinase SgmT as the partner kinase of DigR. In addition to kinase and receiver domains, SgmT consists of an N-terminal GAF domain and a C-terminal GGDEF domain. The GAF domain is the primary sensor domain. The GGDEF domain binds the second messenger bis-(3'-5')-cyclic-dimeric-GMP (c-di-GMP) and functions as a c-di-GMP receptor to spatially sequester SgmT. We identify the DigR binding site in the promoter of the fibA gene, which encodes an abundant extracellular matrix metalloprotease. Whole-genome expression profiling experiments in combination with the identified DigR binding site allowed the identification of the DigR regulon and suggests that SgmT/DigR regulates the expression of genes for secreted proteins and enzymes involved in secondary metabolite synthesis. We suggest that SgmT/DigR regulates extracellular matrix composition and that SgmT activity is regulated by two sensor domains with ligand binding to the GAF domain resulting in SgmT activation and c-di-GMP binding to the GGDEF domain resulting in spatial sequestration of SgmT.  相似文献   

8.
The pair PhoR1-PhoP1 is the third two-component system of the family PhoRP reported in M. xanthus. PhoR1 is a histidine kinase anchored to the membrane through a transmembrane domain located in the amino-terminal portion of the protein. As a result, 93% of the protein is located in the cytoplasm. This topology is unusual in the PhoR-type histidine kinases. PhoP1 is a response regulator with a helix-loop-helix motif typical of the DNA-binding proteins. Although the operon phoPR1 is expressed during vegetative growth, it peaks during development. The expression levels of this operon are higher in phosphate-containing media than in those in which the nutrient is absent. A deletion mutant in this system exhibits a delay in aggregation and the formation of fruiting bodies larger than those of the wild-type strain. The expression of the operon is autoregulated. This system is also partially responsible for the expression of Mg-independent acid and neutral phosphatases, but it is not required for the expression of alkaline phosphatases.  相似文献   

9.
The Synechococcus elongatus mutant lacking the nrtABCD gene cluster (NA3) is defective in active nitrate transport and requires high nitrate concentrations (>30 mm) for sustained growth. Prolonged incubation of NA3 in medium containing 2 mm nitrate led to isolation of a pseudorevertant (NA3R) capable of transport of millimolar concentrations of nitrate, from which three mutants with improved affinity for nitrate were obtained. We identified three genes responsible for the latent transport activity for nitrate: ltnA, which encodes a response regulator with no effector domain; ltnB, which encodes a hybrid histidine kinase with two receiver domains; and ltnT, which encodes a sulfate permease-like protein with a putative cyclic nucleoside monophosphate (cNMP)-binding domain. Missense mutations of the high affinity derivatives of NA3R were found in ltnT, verifying that LtnT acts as the transporter. Overexpression of truncated LtnT lacking the cNMP-binding domain (but not full-length LtnT) conferred nitrate transport activity on NA3, suggesting that the cNMP-binding domain inhibits transport under normal conditions. A nonsense mutation in ltnB that resulted in elimination of the receiver domains of the encoded protein was responsible for expression of nitrate transport activity in NA3R. Expression of LtnB derivatives lacking the receiver domains also conferred low affinity nitrate transport activity on NA3. The phosphoryl group of the histidine kinase domain of LtnB was transferred to Asp(52) of LtnA in vitro. Overexpression of LtnA (but not LtnA(D52E)) led to manifestation of the latent nitrate transport activity in NA3, indicating involvement of phosphorylated LtnA in activation of the novel transporter.  相似文献   

10.
Myxococcus xanthus is a gram-negative bacterium which has a complex life cycle that includes multicellular fruiting body formation. Frizzy mutants are characterized by the formation of tangled filaments instead of hemispherical fruiting bodies on fruiting agar. Mutations in the frz genes have been shown to cause defects in directed motility, which is essential for both vegetative swarming and fruiting body formation. In this paper, we report the discovery of a new gene, called frgA (for frz-related gene), which confers a subset of the frizzy phenotype when mutated. The frgA null mutant showed reduced swarming and the formation of frizzy aggregates on fruiting agar. However, this mutant still displayed directed motility in a spatial chemotaxis assay, whereas the majority of frz mutants fail to show directed movements in this assay. Furthermore, the frizzy phenotype of the frgA mutant could be complemented extracellularly by wild-type cells or strains carrying non-frz mutations. The phenotype of the frgA mutant is similar to that of the abcA mutant and suggests that both of these mutants could be defective in the production or export of extracellular signals required for fruiting body formation rather than in the sensing of such extracellular signals. The frgA gene encodes a large protein of 883 amino acids which lacks homologues in the databases. The frgA gene is part of an operon which includes two additional genes, frgB and frgC. The frgB gene encodes a putative histidine protein kinase, and the frgC gene encodes a putative response regulator. The frgB and frgC null mutants, however, formed wild-type fruiting bodies.  相似文献   

11.
12.
In Myxococcus xanthus, morphogenesis of multicellular fruiting bodies and sporulation are co-ordinated temporally and spatially. csgA mutants fail to synthesize the cell surface-associated C-signal and are unable to aggregate and sporulate. We report that csgA encodes two proteins, a 25 kDa species corresponding to full-length CsgA protein and a 17 kDa species similar in size to C-factor protein, which has been shown previously to have C-signal activity. By systematically varying the accumulation of the csgA proteins, we show that overproduction of the csgA proteins results in premature aggregation and sporulation, uncoupling of the two events and the formation of small fruiting bodies, whereas reduced synthesis of the csgA proteins causes delayed aggregation, reduced sporulation and the formation of large fruiting bodies. These results show that C-signal induces aggregation as well as sporulation, and that an ordered increase in the level of C-signalling during development is essential for the spatial co-ordination of these events. The results support a quantitative model, in which aggregation and sporulation are induced at distinct threshold levels of C-signalling. In this model, the two events are temporally co-ordinated by the regulated increase in C-signalling levels during development. The contact-dependent C-signal transmission mechanism allows the spatial co-ordination of aggregation and sporulation by coupling cell position and signalling levels.  相似文献   

13.
14.
15.
Myxococcus xanthus is a bacterium that forms multicellular fruiting bodies in response to starvation. The initiation of fruiting body formation is cell density dependent, and we suggest that cells measure their cell density by titering the extracellular concentration of excreted adenosine. Our evidence is as follows: (1) At low cell densities fruiting body formation does not occur unless adenosine is added. (2) Norit, a substance that binds purines, inhibits fruiting body formation, and this inhibition is reversed by adenosine. (3) Cells labeled with [14C]carbonate excrete [14C]adenosine which is bound by the Norit. Furthermore, [14C]adenosine is excreted by developing cells at a concentration that will induce fruiting body formation at low cell density. The extracellular adenosine concentration increases with the cell density over a broad range of densities. (4) Hadacidin, an inhibitor of de novo AMP synthesis, inhibits fruiting body formation, and inhibition by hadacidin can be reversed with adenosine. Adenosine also appears to be involved in the aggregation process because the shape and size of the fruiting bodies are sensitive to the external concentration of adenosine.  相似文献   

16.
The Frz chemosensory system is a two-component signal transduction pathway that controls cell reversals and directional movements for the two motility systems in Myxococcus xanthus. To trigger cell reversals, FrzE, a hybrid CheA-CheY fusion protein, autophosphorylates the kinase domain at His-49, and phosphoryl groups are transferred to aspartate residues (Asp-52 and Asp-220) in the two receiver domains of FrzZ, a dual CheY-like protein that serves as the pathway output. The role of the receiver domain of FrzE was unknown. In this paper, we characterize the FrzE protein in vitro and show that the receiver domain of FrzE negatively regulates the autophosphorylation activity of the kinase domain of FrzE. Unexpectedly, it does not appear to play a direct role in phospho-relay as in most other histidine kinase receiver domain hybrid systems. The regulatory role of the FrzE receiver domain suggests that it may interact with or be phosphorylated by an unknown protein. We also show the dynamics of motility system-specific marker proteins in FrzE mutants as cells move forward and reverse. Our studies indicate that the two motility systems are functionally co-ordinated and that any system-specific branching of the pathway most likely occurs downstream of FrzE.  相似文献   

17.
The regA and rdeA gene products of Dictyostelium are involved in the regulation of cAMP signaling. The response regulator, RegA, is composed of an N-terminal receiver domain linked to a C-terminal cAMP-phosphodiesterase domain. RdeA may be a phospho-transfer protein that supplies phosphates to RegA. We show genetically that phospho-RegA is the activated form of the enzyme in vivo, in that the predicted site of aspartate phosphorylation is required for full activity. We show biochemically that RdeA and RegA communicate, as evidenced by phospho-transfer between the two proteins in vitro. Phospho-transfer is dependent on the presumed phospho-accepting amino acids, histidine 65 of RdeA and aspartate 212 of RegA, and occurs in both directions. Phosphorylation of RegA by a heterologous phospho-donor protein activates RegA phosphodiesterase activity at least 20-fold. Our results suggest that the histidine phosphotransfer protein, RdeA, and the response regulator, RegA, constitute two essential elements in a eukaryotic His-Asp phospho-relay network that regulates Dictyostelium development and fruiting body maturation.  相似文献   

18.
The extracellular matrix (ECM) of Myxococcus xanthus is essential for social (S-) motility and fruiting body formation. An ECM-bound protein, FibA, is homologous to M4 zinc metalloproteases and is important for stimulation by a phosphatidylethanolamine (PE) chemoattractant and for formation of discrete aggregation foci. In this work, we demonstrate that a correlation exists between a reduced ability to respond to PE and the observed defects in fruiting body morphogenesis. Furthermore, the fibA aggregation defect is accentuated by the absence of either PilA, the structural subunit of type IV pili, or DifD, a chemosensory response regulator. The inability to form fruiting bodies is not due to a loss of S-motility, but rather the loss of PilA and pili as pilT fibA mutants form fruiting bodies. The FibA active site residue E342 is important for fruiting body morphogenesis in the absence of PilA. Mutants exhibiting defects in fruiting body morphogenesis also produce fewer viable spores. It is proposed that FibA and PilA act as extracellular sensors for developmental signals.  相似文献   

19.
Despite the presence of highly conserved signalling modules, significant cross-communication between different two-component systems has only rarely been observed. Domain swapping and the characterization of liberated signalling modules enabled us to characterize in vitro the protein domains that mediate specificity and are responsible for the high fidelity in the phosphorelay of the unorthodox Bvg and Evg two-component systems. Under equimolar conditions, significant in vitro phosphorylation of purified BvgA and EvgA proteins was only obtained by their histidine kinases, BvgS and EvgS respectively. One hybrid histidine kinase consisting of the BvgS transmitter and HPt domains and of the EvgS receiver domain (BvgS-TO-EvgS-R) was able to phosphorylate BvgA but not EvgA. In contrast, the hybrid protein consisting of the BvgS transmitter and the EvgS receiver and HPt domains (BvgS-T-EvgS-RO) was unable to phosphorylate BvgA but efficiently phosphorylated EvgA. These results demonstrate that the C-terminal HPt domains of the sensor proteins endow the unorthodox two-component systems with a high specificity for the corresponding regulator protein. In the case of the response regulators, the receiver but not the output domains contribute to the specific interaction with the histidine kinases, because a hybrid protein consisting of the EvgA receiver and the BvgA output domain could only be phosphorylated by the EvgS protein.  相似文献   

20.
A significant part of bacterial two-component system response regulators contains effector domains predicted to be involved in metabolism of bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), a second messenger that plays a key role in many physiological processes. The intracellular level of c-di-GMP is controlled by diguanylate cyclase and phosphodiesterases activities associated with GGDEF and EAL domains, respectively. The Legionella pneumophila Lens genome displays 22 GGDEF/EAL domain-encoding genes. One of them, lpl0329, encodes a protein containing a two-component system receiver domain and both GGDEF and EAL domains. Here, we demonstrated that the GGDEF and EAL domains of Lpl0329 are both functional and lead to simultaneous synthesis and hydrolysis of c-di-GMP. Moreover, these two opposite activities are finely regulated by Lpl0329 phosphorylation due to the atypical histidine kinase Lpl0330. Indeed, Lpl0330 was found to autophosphorylate on a histidine residue in an atypical H box, which is conserved in various bacteria species and thus defines a new histidine kinase subfamily. Lpl0330 also catalyzes the phosphotransferase to Lpl0329, which results in a diguanylate cyclase activity decrease whereas phosphodiesterase activity remains efficient. Altogether, these data present (i) a new histidine kinase subfamily based on the conservation of an original H box that we named HGN H box, and (ii) the first example of a bifunctional enzyme that modulates synthesis and turnover of c-di-GMP in response to phosphorylation of its receiver domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号