首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
An analysis of the bet genes governing the osmoregulatory choline-glycine betaine pathway of Escherichia coli was performed. A 9 kb BamHI fragment, located 30 to 39 kb counterclockwise of the EcoRI site of lacZ, coded for all known Bet activities. The following genes were identified: the betA gene for the choline dehydrogenase, the betB gene for the betaine aldehyde dehydrogenase, and the betT gene or operon for the high-affinity choline transport. The betB and the betT genes were named in this paper, and the clockwise gene order was shown to be betA,B,T. Subcloning gave plasmids which expressed each of the three Bet activities separately. The cloned bet genes remained osmotically regulated, indicating the existence of several osmotically regulated promoters in the bet region. Salmonella typhimurium, which carried the bet region of E. coli in the broad-host-range vector pRK293 expressed the three Bet activities and displayed increased osmotic tolerance in the presence of choline.  相似文献   

2.
3.
The sequence was determined of 6493 nucleotides encompassing the bet genes of Escherichia coli which encode the osmoregulatory choline-glycine betaine pathway. Four open reading frames were identified: betA encoding choline dehydrogenase, a flavoprotein of 61.9kDa; betB encoding betaine aldehyde dehydrogenase (52.8kDa); betT encoding a proton-motive-force-driven, high-affinity transport system for choline (75.8kDa); and betl, capable of encoding a protein of 21.8kDa, implicated as a repressor involved in choline regulation of the bet genes. Identification of the genes was supported by subcloning, physical mapping of lambda placMu53 insertions, amino acid sequence similarity, or N-terminal amino acid sequencing. The bet genes are tightly spaced, with betT located upstream of, and transcribed divergently to, the tandemly linked betIBA genes.  相似文献   

4.
Synechococcus sp. PCC7942, a fresh water cyanobacterium, was transformed by a shuttle plasmid that contains a 9-kb fragment encoding the Escherichia coli bet gene cluster, i.e. betA (choline dehydrogenase), betB (betaine aldehyde dehydrogenase), betI (a putative regulatory protein), and betT (the choline transport system). The expression of these genes was demonstrated in the cyanobacterial cells (bet-containing cells) by northern blot analysis, as well as by the detection of glycine betaine by 1H nuclear magnetic resonance in cells supplemented with choline. Endogenous choline was not detected in either control or bet-containing cells. Both control and bet-containing cyanobacterial cells were found to import choline in an energy-dependent process, although this import was restricted only to bet-containing cells in conditions of salt stress. Glycine betaine was found to accumulate to a concentration of 45 mM in bet-containing cyanobacterial cells, and this resulted in a stabilization of the photosynthetic activities of photosystems I and II, higher phycobilisome contents, and general protective effects against salt stress when compared to control cells. The growth of bet-containing cells was much faster in the presence of 0.375 M NaCl than that of control cells, indicating that the transformant acquired resistance to salt stress.  相似文献   

5.
Osmotically stressed Escherichia coli cells synthesize the osmoprotectant glycine betaine by oxidation of choline through glycine betaine aldehyde (choline----glycine betaine aldehyde----glycine betaine; B. Landfald and A.R. Str?m, J. Bacteriol. 165:849-855, 1986. Mutants blocked at the level of choline dehydrogenase were isolated by selection of strains which did not grow at elevated osmotic strength in the presence of choline but grew when supplemented with glycine betaine. A gene governing the choline dehydrogenase activity was named betA. Mapping by P1 transduction, F' complementation, and deletion mutagenesis showed the betA gene to be located at 7.5 min in the argF-codAB region of the chromosome. Mutants carrying deletions of this region also lacked glycine betaine aldehyde dehydrogenase activity and high-affinity uptake activity for choline; these deletions did not influence the activities of glycine betaine uptake or low-affinity choline uptake, both of which were osmotically regulated.  相似文献   

6.
Pseudomonas aeruginosa uses the quaternary amine choline as a carbon source, osmoprotectant, and macromolecular precursor. The importance of choline in P. aeruginosa physiology is highlighted by the presence of multiple known and putative choline transporters encoded within its genome. This report describes the relative roles of three choline transporters, the ABC transporter CbcXWV and two symporters, BetT1 and BetT3, in P. aeruginosa growth on choline under osmotic conditions that are physiologically relevant to eukaryotic hosts. The increased lag phases exhibited by the ΔbetT1 and ΔbetT1 ΔbetT3 mutants relative to the wild type upon transfer to medium with choline as a sole carbon source suggested roles for BetT1 and BetT3 in cells newly exposed to choline. BetT3 and CbcXWV, but not BetT1, were sufficient to support growth on choline. betT1 and betT3 expression was regulated by the repressor BetI and choline, whereas cbcXWV expression was induced by the activator GbdR and glycine betaine. The data support a model in which, upon transfer to a choline-based medium, the glycine betaine derived from choline taken up by BetT1 and BetT3 promotes subsequent GbdR-mediated cbcXWV induction. Furthermore, growth data indicated that the relative contributions of each transporter varied under different conditions, as BetT1 and CbcXWV were the primary choline transporters under hypo-osmolar conditions whereas BetT3 was the major choline transporter under hyperosmolar conditions. This work represents the first systematic approach to unravel the mechanisms of choline uptake in P. aeruginosa, which has the most complex bacterial choline uptake systems characterized to date.  相似文献   

7.
8.
Glycine betaine and its precursors choline and glycine betaine aldehyde have been found to confer a high level of osmotic tolerance when added exogenously to cultures of Escherichia coli at an inhibitory osmotic strength. In this paper, the following findings are described. Choline works as an osmoprotectant only under aerobic conditions, whereas glycine betaine aldehyde and glycine betaine function both aerobically and anaerobically. No endogenous glycine betaine accumulation was detectable in osmotically stressed cells grown in the absence of the osmoprotectant itself or the precursors. A membrane-bound, O2-dependent, and electron transfer-linked dehydrogenase was found which oxidized choline to glycine betaine aldehyde and aldehyde to glycine betaine at nearly the same rate. It displayed Michaelis-Menten kinetics; the apparent Km values for choline and glycine betaine aldehyde were 1.5 and 1.6 mM, respectively. Also, a soluble, NAD-dependent dehydrogenase oxidized glycine betaine aldehyde. It displayed Michaelis-Menten kinetics; the apparent Km values for the aldehyde, NAD, and NADP were 0.13, 0.06, and 0.5 mM, respectively. The choline-glycine betaine pathway was osmotically regulated, i.e., full enzymic activities were found only in cells grown aerobically in choline-containing medium at an elevated osmotic strength. Chloramphenicol inhibited the formation of the pathway in osmotically stressed cells.  相似文献   

9.
Glycine betaine is an osmoprotectant found in many organisms, including bacteria and higher plants. The bacterium Escherichia coli produces glycine betaine by a two-step pathway where choline dehydrogenase (CDH), encoded by betA, oxidizes choline to betaine aldehyde which is further oxidized to glycine betaine by the same enzyme. The second step, conversion of betaine aldehyde into glycine betaine, can also be performed by the second enzyme in the pathway, betaine aldehyde dehydrogenase (BADH), encoded by betB. Transformation of tobacco (Nicotiana tabacum), a species not accumulating glycine betaine, with the E. coli genes for glycine betaine biosynthesis, resulted in transgenic plants accumulating glycine betaine. Plants producing CDH were found to accumulate glycine betaine as did F1 progeny from crosses between CDH- and BADH-producing lines. Plants producing both CDH and BADH generally accumulated higher amounts of glycine betaine than plants producing CDH alone, as determined by 1H NMR analysis. Transgenic tobacco lines accumulating glycine betaine exhibited increased tolerance to salt stress as measured by biomass production of greenhouse-grown intact plants. Furthermore, experiments conducted with leaf discs from glycine betaine-accumulating plants indicated enhanced recovery from photoinhibition caused by high light and salt stress as well as improved tolerance to photoinhibition under low temperature conditions. In conclusion, introduction of glycine betaine production into tobacco is associated with increased stress tolerance probably partly due to improved protection of the photosynthetic apparatus.  相似文献   

10.
Uptake of [14C]choline upon hyperosmotic stress of exponential-phase Staphylococcus aureus cultures in a complex medium occurred after a delay of 2.5 to 3.5 h. This uptake could be prevented by chloramphenicol, suggesting that it occurred via an inducible transport system. Radioactivity from [14C]choline was accumulated as [14C]glycine betaine. However, neither choline nor glycine betaine could act as the major carbon and energy source for the organism, suggesting that choline was not metabolized beyond glycine betaine. Assay of choline transport activity in cells grown under different conditions in defined media revealed that osmotic stress was mainly responsible for the induction, but choline gave a further increase in induction. The system was not induced in anaerobically grown cells. Choline transport activity was repressed by glycine betaine and proline betaine, suggesting that these compounds are corepressors. Choline transport activity was not induced in cells osmotically stressed by 1 M potassium phosphate or 0.5 M sodium phosphate, but was induced in cells grown in low-phosphate medium in the absence of osmotic stress. This suggests that there is a connection between the phosphate and osmotic stress regulons. Choline transport was energy and Na+ dependent and had a Km of 46 microM and a maximum rate of transport (Vmax) of 54 nmol/min/mg (dry weight). The results of competition studies suggested that N-methyl and an alcohol group or aldehyde groups at the ends of the molecule were important in its recognition by the system. Glycine betaine was not a highly effective competitor, suggesting that its transport system and the choline transport system were distinct from each other. Choline transport was highly susceptible to a variety of inhibitors, which may be related to the greater dependence on respiratory metabolism of cells grown in the presence of high NaC1 concentrations.  相似文献   

11.
Glycine betaine plays an important role in some plants, including maize, in conditions of abiotic stress, but different maize varieties vary in their capacity to accumulate glycine betaine. An elite maize inbred line DH4866 was transformed with the betA gene from Escherichia coli encoding choline dehydrogenase (EC 1.1.99.1), a key enzyme in the biosynthesis of glycine betaine from choline. The transgenic maize plants accumulated higher levels of glycine betaine and were more tolerant to drought stress than wild-type plants (non-transgenic) at germination and the young seedling stage. Most importantly, the grain yield of transgenic plants was significantly higher than that of wild-type plants after drought treatment. The enhanced glycine betaine accumulation in transgenic maize provides greater protection of the integrity of the cell membrane and greater activity of enzymes compared with wild-type plants in conditions of drought stress.  相似文献   

12.
13.
14.
15.
Escherichia coli KO11 (parent) and LY01 (mutant) have been engineered for the production of ethanol. Gene arrays were used to identify expression changes that occurred in the mutant, LY01, during directed evolution to improve ethanol tolerance (defined as extent of growth in the presence of added ethanol). Expression levels for 205 (5%) of the ORFs were found to differ significantly (p < 0.10) between KO11 and LY01 under each of six different growth conditions (p < 0.000001). Statistical evaluation of differentially expressed genes according to various classification schemes identified physiological areas of importance. A large fraction of differentially expressed ORFs were globally regulated, leading to the discovery of a nonfunctional fnr gene in strain LY01. In agreement with a putative role for FNR in alcohol tolerance, increasing the copy number of fnr(+) in KO11(pGS196) decreased ethanol tolerance but had no effect on growth in the absence of ethanol. Other differences in gene expression provided additional clues that permitted experimentation. Tolerance appears to involve increased metabolism of glycine (higher expression of gcv genes) and increased production of betaine (higher expression of betIBA and betT encoding betaine synthesis from choline and choline uptake, respectively). Addition of glycine (10 mM) increased ethanol tolerance in KO11 but had no effect in the absence of ethanol. Addition of betaine (10 mM) increased ethanol tolerance by over 2-fold in both LY01 and KO11 but had no effect on growth in the absence of ethanol. Both glycine and betaine can serve as protective osmolytes, and this may be the basis of their beneficial action. In addition, the marAB genes encoding multiple antibiotic resistance proteins were expressed at higher levels in LY01 as compared to KO11. Interestingly, overexpression of marAB in KO11 made this strain more ethanol-sensitive. Overexpression of marAB in LY01 had no effect on ethanol tolerance. Increased expression of genes encoding serine uptake (sdaC) and serine deamination (sdaB) also appear beneficial for LY01. Addition of serine increased the growth of LY01 in the presence and absence of ethanol but had no effect on KO11. Changes in the expression of several genes concerned with the synthesis of the cell envelope components were also noted, which may contribute to increased ethanol tolerance.  相似文献   

16.
The genomic context of the recognized bet genes for choline-O-sulphate (COS) utilization in Pseudomonas putida KT2440 is such that betC (choline sulphatase) lies adjacent to an ATP-binding cassette transporter and a LysR type regulator, but well away from betBA, encoding enzymes for transformation of choline into glycine betaine. The consequences of such genetic layout of the functions for COS metabolism have been examined with a suite of genetic and biochemical approaches. An early clue of the utilities of the betencoded products was exposed by the phenotypes of a betC deletion. This mutant still accumulated intact COS but failed to use this compound as carbon or nitrogen source. Furthermore, betC expression was downregulated at high salt concentrations, showing that the principal role of this gene lied in COS metabolism, not in osmoprotection. In contrast, the betBA genes were required for choline transformation into the highly effective compatible solute glycine betaine (and the concomitant endurance to high salt) and also for its utilization as carbon or nitrogen source. Thus, unlike in the cases of Bacillus subtilis and Sinorhizobium meliloti, betC is unrelated to osmoprotection in Pseudomonas putida while the betBA genes are required for both betaine synthesis and tolerance to high osmotic pressure.  相似文献   

17.
Hybridization to a PCR product derived from conserved betaine choline carnitine transporter (BCCT) sequences led to the identification of a 3.4-kb Sinorhizobium meliloti DNA segment encoding a protein (BetS) that displays significant sequence identities to the choline transporter BetT of Escherichia coli (34%) and to the glycine betaine transporter OpuD of Bacillus subtilis (30%). Although the BetS protein shows a common structure with BCCT systems, it possesses an unusually long hydrophilic C-terminal extension (169 amino acids). After heterologous expression of betS in E. coli mutant strain MKH13, which lacks choline, glycine betaine, and proline transport systems, both glycine betaine and proline betaine uptake were restored, but only in cells grown at high osmolarity or subjected to a sudden osmotic upshock. Competition experiments demonstrated that choline, ectoine, carnitine, and proline were not effective competitors for BetS-mediated betaine transport. Kinetic analysis revealed that BetS has a high affinity for betaines, with K(m)s of 16 +/- 2 microM and 56 +/- 6 microM for glycine betaine and proline betaine, respectively, in cells grown in minimal medium with 0.3 M NaCl. BetS activity appears to be Na(+) driven. In an S. meliloti betS mutant, glycine betaine and proline betaine uptake was reduced by about 60%, suggesting that BetS represents a major component of the overall betaine uptake activities in response to salt stress. beta-Galactosidase activities of a betS-lacZ strain grown in various conditions showed that betS is constitutively expressed. Osmotic upshock experiments performed with wild-type and betS mutant cells, treated or not with chloramphenicol, indicated that BetS-mediated betaine uptake is the consequence of immediate activation of existing proteins by high osmolarity, most likely through posttranslational activation. Growth experiments underscored the crucial role of BetS as an emerging system involved in the rapid acquisition of betaines by S. meliloti subjected to osmotic upshock.  相似文献   

18.
Choline, glycine betaine, and L-proline enhanced the growth of Staphylococcus aureus at high osmolarity (i.e., they acted as osmoprotectants) on various liquid and solid defined media, while an osmoprotective effect of taurine was shown only for cells growing on high-NaCl solid medium that lacked other osmoprotectants. Potassium pool levels were high, and there was little difference in levels in cells grown at different osmolarities. Glycine betaine accumulated to high levels in osmotically stressed cells, and choline was converted to glycine betaine. Proline and taurine also accumulated in response to osmotic stress but to lower levels than glycine betaine.  相似文献   

19.
Rhizobium leguminosarum bv. viciae 3841 contains six putative quaternary ammonium transporters (Qat), of the ABC family. Qat6 was strongly induced by hyperosmosis although the solute transported was not identified. All six systems were induced by the quaternary amines choline and glycine betaine. It was confirmed by microarray analysis of the genome that pRL100079-83 (qat6) is the most strongly upregulated transport system under osmotic stress, although other transporters and 104 genes are more than threefold upregulated. A range of quaternary ammonium compounds were tested but all failed to improve growth of strain 3841 under hyperosmotic stress. One Qat system (gbcXWV) was induced 20-fold by glycine betaine and choline and a Tn5::gbcW mutant was severely impaired for both transport and growth on these compounds, demonstrating that it is the principal system for their use as carbon and nitrogen sources. It transports glycine betaine and choline with a high affinity (apparent K(m), 168 and 294 nM, respectively).  相似文献   

20.
Betaine aldehyde dehydrogenase in sorghum.   总被引:25,自引:0,他引:25       下载免费PDF全文
The ability to synthesize and accumulate glycine betaine is wide-spread among angiosperms and is thought to contribute to salt and drought tolerance. In plants glycine betaine is synthesized by the two-step oxidation of choline via the intermediate betaine aldehyde, catalyzed by choline monooxygenase and betaine aldehyde dehydrogenase (BADH). Two sorghum (Sorghum bicolor) cDNA clones, BADH1 and BADH15, putatively encoding betaine aldehyde dehydrogenase were isolated and characterized. BADH1 is a truncated cDNA of 1391 bp. BADH15 is a full-length cDNA clone, 1812 bp in length, predicted to encode a protein of 53.6 kD. The predicted amino acid sequences of BADH1 and BADH15 share significant homology with other plant BADHs. The effects of water deficit on BADH mRNA expression, leaf water relations, and glycine betaine accumulation were investigated in leaves of preflowering sorghum plants. BADH1 and BADH15 mRNA were both induced by water deficit and their expression coincided with the observed glycine betaine accumulation. During the course of 17 d, the leaf water potential in stressed sorghum plants reached -2.3 MPa. In response to water deficit, glycine betaine levels increased 26-fold and proline levels increased 108-fold. In severely stressed plants, proline accounted for > 60% of the total free amino acid pool. Accumulation of these compatible solutes significantly contributed to osmotic potential and allowed a maximal osmotic adjustment of 0.405 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号