首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
A high increase in the amount of methylated tRNA bases was found in vivo in Rous sarcoma virus infected and transformed chick embryo fibroblasts in comparison with normal cells, tRNA methylases extracted from transformed cells showed also higher activity in vitro with a heterologous substrate. 5'-deoxy-5'-S-isobutyl adenosine, (a structural analogue of S-adenosyl-L homocysteine), which inhibits virus-induced cell transformation, inhibits also the increase of incorporation of labelled methyl groups into tRNA in infected and transformed cells. When normal cells are grown in the presence of this inhibitor, undermethylated tRNAs are obtained. The effect of the drug is different in normal, infected and transformed cells. The methylation of the different bases is inhibited in vitro and in vivo to various extent. The effect of this substance on tRNA methylation may be the cause of its inhibitory effect on cell transformation.  相似文献   

2.
Miranda TB  Lowenson JD  Clarke S 《FEBS letters》2004,577(1-2):181-186
It has been reported that S-adenosylmethionine-dependent protein methylation in rat kidney extracts can be greatly stimulated by tyrphostin A25, a tyrosine kinase inhibitor. We have investigated the nature of this stimulation. We find that addition of tyrphostin A25, in combination with the protein phosphatase inhibitor vanadate, leads to the stimulation of methylation of polypeptides of 64, 42, 40, 36, 31, and 15 kDa in cytosolic extracts of mouse kidney. The effect of tyrphostin appears to be relatively specific for the A25 species. The enhanced methylation does not represent the activity of the families of protein histidine, lysine or arginine methyltransferases, nor that of the l-isoaspartyl/d-aspartyl methyltransferase, enzymes responsible for the bulk of protein methylation in most cell types. Chemical and enzymatic analyses of the methylated polypeptides suggest that the methyl group is in an ester linkage to the protein. In heart extracts, we find a similar situation but here the stimulation of methylation is not dependent upon vanadate and an additional 18 kDa methylated species is found. In contrast, little or no stimulation of methylation is found in brain or testis extracts. This work provides evidence for a novel type of protein carboxyl methylation reaction that may play a role in signaling reactions in certain mammalian tissues.  相似文献   

3.
It has been shown earlier that 3-deazaadenosine but not 3-deazaaristeromycin inhibits chemotaxis of RAW264 cells (Aksamit, R.R., Falk, W., and Cantoni, G.L. (1982) J. Biol. Chem. 257, 621-625). We show here in RAW264 cells that (a) the incorporation of the methyl group of methionine into phosphatidylcholine is inhibited approximately 90% by both 3-deazaadenosine and 3-deazaaristeromycin, (b) 3-deazaadenosine but not 3-deazaaristeromycin inhibits the synthesis of specific proteins, and (c) 3'-deoxyadenosine and erythro-9-(2-hydroxy-3-nonyl)-adenine in the presence of adenosine and homocysteine inhibit chemotaxis and the synthesis of specific proteins. Inhibition of the synthesis of specific proteins can be observed only after the solubilized cellular proteins are separated by two-dimensional polyacrylamide gel electrophoresis, since the adenosine analogs do not significantly affect total protein synthesis. When total protein synthesis is inhibited by incubation of the cells with cycloheximide, puromycin, or actinomycin D, chemotaxis is correspondingly inhibited. The results suggest that the continuous synthesis of one or more cellular proteins is required for chemotaxis by RAW264 cells.  相似文献   

4.
A strategy that facilitates the identification of substrates for protein carboxyl methyltransferases that form "stable" methyl esters, i.e., those that remain largely intact during conventional polyacrylamide gel electrophoresis is described. Rat PC12 cells were cultured in the presence of adenosine dialdehyde (a methylation inhibitor) to promote the accumulation of hypomethylated proteins. Nonidet P-40 cell extracts were then incubated in the presence of S-[methyl-3H]adenosyl-L-methionine to label methyl-accepting sites via endogenous methyltransferases. After labeled proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, gel slices were incubated in 4 N methanesulfonic acid or 6 N HCl to hydrolyze methyl esters. The resulting [3H]methanol was detected by trapping in liquid scintillation fluid. Seven carboxyl methylated proteins were observed with masses ranging from 18 to 96 kDa. Detection of five of these proteins required prior treatment of cells with adenosine dialdehyde, while methyl incorporation into one protein at 18 kDa was substantially enhanced by the treatment. The use of acidic conditions for methyl ester hydrolysis has an important advantage over assays that utilize alkaline hydrolysis conditions. In PC12 cells, and possibly other cell types where there are significant levels of arginine methylation, the methanol signal becomes obscured by high levels of volatile methylamines generated under the alkaline conditions. Carrying out diffusion assays under acidic conditions eliminates this interference. Adenosine dialdehyde, by virtue of increasing the methyl-accepting capacity of substrates for protein carboxyl methyltransferases, in combination with a more selective assay for carboxyl methylation, should prove useful in the isolation and characterization of new protein carboxyl methyltransferases and their substrates.  相似文献   

5.
6.
The administration of adenosine together with homocysteine resulted in a dose-related elevation of cerebral S-adenosyl-L-homocysteine without concomitant perturbation of S-adenosyl-L-methionine levels. The adenosine + homocysteine treatment also decreased the incorporation of labile and stable methyl groups into brain proteins. Brain [3H]-phosphatidyl N,N-dimethylethanolamine and [3H]-phosphatidylcholine were also significantly decreased while [3H]-phosphatidyl-N-monomethylethanolamine remained unchanged. The data indicate that elevated brain S-adenosylhomocysteine can markedly and selectively inhibit the in vivo methylation of brain proteins and phospholipids.  相似文献   

7.
Molecular evolution from abiotic scratch   总被引:5,自引:0,他引:5  
Tau hyperphosphorylation is a central event in the development of Alzheimer's Disease (AD). Protein phosphatase 2A (PP2A) heterotrimer formation is necessary for efficient dephosphorylation of the tau protein. S-Adenosylmethionine-dependent carboxyl methylation is essential for the assembly of PP2A heterotrimers. Epidemiological evidence indicates that elevated plasma homocysteine is an independent risk factor for AD. Homocysteine is a key intermediate in the methyl cycle and elevated plasma homocysteine results in a global decrease in cellular methylation. We propose that the PP2A methylation system is the link relating elevated plasma homocysteine to AD.  相似文献   

8.
Modifications in methyl group and homocysteine metabolism are associated with a number of pathologies, including vascular disease, cancer, and neural tube defects. A diabetic state is known to alter both methyl group and homocysteine metabolism, and glycine N-methyltransferase (GNMT) is a major regulatory protein that controls the supply and utilization of methyl groups. We have shown previously that diabetes induces GNMT expression and reduces plasma homocysteine pools by stimulating both its catabolism and folate-independent remethylation. This study was conducted to determine whether insulin plays a role in the control of homocysteine concentrations and GNMT as well as other key regulatory proteins. Male Sprague-Dawley rats were randomly assigned to one of three groups: control, streptozotocin (STZ)-induced diabetic (60 mg/kg body wt), and insulin-treated diabetic (1.0 U bid). After 5 days, rats were anesthetized (ketamine-xylazine) for procurement of blood and tissues. A 1.5-fold elevation in hepatic GNMT activity and hypohomocysteinemia in diabetic rats was completely prevented by insulin treatment. Additionally, diabetes-mediated alterations in methionine synthase, phosphatidylethanolamine N-methyltransferase, and DNA methylation were also prevented by insulin. We hypothesize that the concentration of blood glucose may represent a regulatory signal to modify GNMT and homocysteine. In support of this, blood glucose concentrations were negatively correlated with total plasma homocysteine (r = -0.75, P < 0.001) and positively correlated with GNMT activity (r = 0.77, P < 0.001). Future research will focus on further elucidating the role of glucose or insulin as a signal for regulating homocysteine and methyl group metabolism.  相似文献   

9.
It was demonstrated recently that substrates for protein N-methyltransferases (J. Najbauer and D. W. Aswad, 1990, J. Biol. Chem. 265, 12,717-12,721) and protein carboxyl methyltransferases (J. Najbauer, B. A. Johnson, and D. W. Aswad, 1991, Anal. Biochem. 197, 412-420) accumulate when rat PC12 cells are cultured in the presence of the methylation inhibitor, adenosine dialdehyde. In the present report, we have further characterized this phenomenon in PC12 cells and in two other, widely used cell types. Adenosine dialdehyde was found to increase the methyl-accepting capacity of proteins in human skin fibroblasts and mouse Sp2/0 myeloma cells. However, both the level of methyl incorporation in untreated cells and the amount of stimulation afforded by inhibitor treatment were substantially lower in these cells than in PC12 cells. All three cell lines accumulated methyl acceptor(s) at 17-21 kDa. The PC12 cells and the fibroblasts also exhibited stimulation of three apparently similar proteins in the 33- to 38-kDa region, where several arginine-methylated proteins involved in RNA processing would be expected. The optimal conditions for methylation of PC12 cell extracts with regard to pH, time of methylation, and S-[methyl-3H]adenosyl-L-methionine concentration were characterized. Increased methyl incorporation was detected after adenosine dialdehyde treatments as short as 2 h, and methylation of most substrates continued to increase as the time of treatment was extended to 72 h. The kinetics of accumulation varied from substrate to substrate. Fluorograms of two-dimensional gels of extracts from untreated PC12 cells incubated in the presence of S-[methyl-3H]adenosyl-L-methionine revealed patterns of methyl incorporation similar to those of treated cells, but longer exposure times were necessary (e.g., 35 days vs 7 days). These findings suggest that the inhibitor treatment works mainly by inhibiting the post- or cotranslational methylation of a "normal" array of cellular proteins.  相似文献   

10.
Methyltransferases use S-adenosylmethionine (AdoMet) as methyl group donor, forming S-adenosylhomocysteine (AdoHcy) and methylated substrates, including DNA and proteins. AdoHcy inhibits most methyltransferases. Accumulation of intracellular AdoHcy secondary to Hcy elevation elicits global DNA hypomethylation. We aimed at determining the extent at which protein arginine methylation status is affected by accumulation of intracellular AdoHcy. AdoHcy accumulation in human umbilical vein endothelial cells was induced by inhibition of AdoHcy hydrolase by adenosine-2,3-dialdehyde (AdOx). As a measure of protein arginine methylation status, the levels of monomethylarginine (MMA) and asymmetric and symmetric dimethylated arginine residues (ADMA and SDMA, respectively) in cell protein hydrolysates were measured by HPLC. A 10% decrease was observed at a 2.5-fold increase of intracellular AdoHcy. Western blotting revealed that the translational levels of the main enzymes catalyzing protein arginine methylation, protein arginine methyl transferases (PRMTs) 1 and 5, were not affected by AdoHcy accumulation. Global DNA methylation status was evaluated by measuring 5-methylcytosine and total cytosine concentrations in DNA hydrolysates by LC-MS/MS. DNA methylation decreased by 10% only when intracellular AdoHcy concentration accumulated to 6-fold of its basal value. In conclusion, our results indicate that protein arginine methylation is more sensitive to AdoHcy accumulation than DNA methylation, pinpointing a possible new player in methylation-related pathology.  相似文献   

11.
12.
RhoA GTPases modulate endothelial permeability. We have previously shown that adenosine and homocysteine enhance basal barrier function in pulmonary artery endothelial cells by a mechanism involving diminution of RhoA carboxyl methylation and activity. In the current study, we investigated the effects of adenosine and homocysteine on endothelial monolayer permeability in cultured monolayers. Adenosine and homocysteine significantly attenuated thrombin-induced endothelial barrier dysfunction and intercellular gap formation. We found significantly diminished RhoA associated with the membrane subcellular fraction in endothelial cells pretreated with adenosine and homocysteine, compared with vehicle-treated endothelial cells. Additionally, adenosine and homocysteine significantly blunted RhoA activation following thrombin exposure. Incubation with adenosine and homocysteine also enhanced in vitro interactions between RhoA and RhoGDI, as well as subcellular translocation of p190RhoGAP to the cytosol. These data demonstrate that elevated intracellular concentrations of homocysteine and adenosine enhance endothelial barrier function in cultured endothelial cells isolated from the main pulmonary artery and lung microvasculature, suggesting a potentially protective effect against pulmonary edema in response to lung injury. We speculate that homocysteine and adenosine modulate the level of endothelial barrier dysfunction through modulation of RhoA posttranslational processing resulting in diminished GTPase activity through altered interactions with modulators of RhoA activation.  相似文献   

13.
The widely accepted hypothesis of vanadate action on cells postulates that this ion inhibits protein phosphatase(s) that dephosphorylates protein phosphotyrosine residues. This inhibition causes tyrosine hyperphosphorylation of cell proteins followed by changes in physiological action of phosphoproteins resulting in stimulation of cell proliferation, expression of protooncogenes, and transient cell transformation. We have found that treatment of human ovary carcinoma (CaOv) cells with vanadate causes the increase in total protein phosphorylation from 1.5- to 2.0-fold whereas the ratio between phosphoserine, phosphothreonine, and phosphotyrosine content remains unchanged. At the same time, enhancement of c-myc gene expression (not c-fos) was observed. Hence, the increase in the ratio of phosphotyrosine to phosphoserine and phosphothreonine is not an obligatory intermediate stage before vanadate-dependent activation of c-myc expression.  相似文献   

14.
Reticulocytes contain a nonlysosomal, ATP-dependent system for degrading abnormal proteins and normal proteins during cell maturation. Vanadate, which inhibits several ATPases including the ATP-dependent proteases in Escherichia coli and liver mitochondria, also markedly reduced the ATP-dependent degradation of proteins in reticulocyte extracts. At low concentrations (K1 = 50 microM), vanadate inhibited the ATP-dependent hydrolysis of [3H]methylcasein and denatured 125I-labeled bovine serum albumin, but it did not reduce the low amount of proteolysis seen in the absence of ATP. This inhibition by vanadate was rapid in onset, reversed by dialysis, and was not mimicked by molybdate. Vanadate inhibits proteolysis at an ATP-stimulated step which is independent of the ATP requirement for ubiquitin conjugation to protein substrates. When the amino groups on casein and bovine serum albumin were covalently modified so as to prevent their conjugation to ubiquitin, the derivatized proteins were still degraded by an ATP-stimulated process that was inhibited by vanadate. In addition, vanadate did not reduce the ATP-dependent conjugation of 125I-ubiquitin to endogenous reticulocyte proteins, although it markedly inhibited their degradation. In intact reticulocytes vanadate also inhibited the degradation of endogenous proteins and of abnormal proteins containing amino acid analogs. This effect was rapid and reversible; however, vanadate also reduced protein synthesis and eventually lowered ATP levels in the intact cells. Vanadate (10 mM) has also been reported to decrease intralysosomal proteolysis in hepatocytes. However, in liver extracts this effect on lysosomal proteases required high concentrations of vanadate (K1 = 500 microM) and was also observed with molybdate, unlike the inhibition of ATP-dependent proteolysis in reticulocytes.  相似文献   

15.
S-Adenosyl-L-homocysteine was used to inhibit the methylation of carboxylic acid residues of membrane proteins in intact human erythrocytes. Incubation of erythrocytes for 24 h with 5 mM each of adenosine and L-homocysteine resulted in the intracellular accumulation of S-adenosyl-L-homocysteine and substantially inhibited membrane protein carboxyl methylation. From the degree of inhibition and from the observed turnover of methylated proteins, we estimate that the number of protein methyl esters in cells incubated with adenosine and L-homocysteine for 20 h is less than 20% that of cells incubated without these inhibitors. No significant differences in the physical deformability properties of the membrane of these hypomethylated cells were detected. However, there was a small but significant (p less than 0.001) increase in the amount of membrane protein D-aspartyl residues in these cells compared to control cells. These observations are consistent with the hypothesis that methylation of membrane proteins at D-aspartyl residues may result in the selective removal or repair of these uncommon residues.  相似文献   

16.
17.
Geminiviruses encapsidate single-stranded DNA genomes that replicate in plant cell nuclei through double-stranded DNA intermediates that associate with cellular histone proteins to form minichromosomes. Like most plant viruses, geminiviruses are targeted by RNA silencing and encode suppressor proteins such as AL2 and L2 to counter this defense. These related proteins can suppress silencing by multiple mechanisms, one of which involves interacting with and inhibiting adenosine kinase (ADK), a cellular enzyme associated with the methyl cycle that generates S-adenosyl-methionine, an essential methyltransferase cofactor. Thus, we hypothesized that the viral genome is targeted by small-RNA-directed methylation. Here, we show that Arabidopsis plants with mutations in genes encoding cytosine or histone H3 lysine 9 (H3K9) methyltransferases, RNA-directed methylation pathway components, or ADK are hypersensitive to geminivirus infection. We also demonstrate that viral DNA and associated histone H3 are methylated in infected plants and that cytosine methylation levels are significantly reduced in viral DNA isolated from methylation-deficient mutants. Finally, we demonstrate that Beet curly top virus L2- mutant DNA present in tissues that have recovered from infection is hypermethylated and that host recovery requires AGO4, a component of the RNA-directed methylation pathway. We propose that plants use chromatin methylation as a defense against DNA viruses, which geminiviruses counter by inhibiting global methylation. In addition, our results establish that geminiviruses can be useful models for genome methylation in plants and suggest that there are redundant pathways leading to cytosine methylation.  相似文献   

18.
Cell cycle-dependent methyl esterification of lamin B   总被引:17,自引:0,他引:17  
Previous work from this laboratory has shown that approximately 24 proteins are reversibly modified by methyl esterification in a mouse lymphoma cell line. Here, we analyze several mouse tissues as well as other mouse, hamster, and human cell lines and find that many protein-methyl esters are ubiquitous while others show apparent tissue specificity. One of the modified proteins is identified by cellular localization and immunological detection as lamin B, a nuclear envelope structural protein which undergoes depolymerization during mitosis. The average stoichiometry of methylation is at least 0.5 methyl groups per lamin B molecule as determined by radioactive incorporation. By immunoblotting, however, demethylation appears to result in a gain of two negative charges suggesting the loss of two neutral methyl esters producing two carboxylic acid groups per molecule. By comparing mitotic and interphase cells, lamin B is found to be demethylated in mitosis while most other methyl esterified proteins show no appreciable cell cycle dependence. In addition to the correlation with cell cycle, it is shown that lamin B does not incorporate radioactive methyl esters in intact mouse brain tissue yet can do so if the cells are lysed. Analysis of lamin B charge by immunoblotting after isoelectric focusing indicates that this protein is fully methylated in brain suggesting that turnover of methyl groups in intact brain tissue is inhibited. We propose that methylation of lamin B may be involved in the control of disassembly and reassembly of the nuclear envelope during mitosis. If this were the case, the apparent lack of methyl group turnover in brain would be consistent with the inability of those cells to divide.  相似文献   

19.
Protein carboxyl methylation in rat kidney cytosol is increased by the addition of guanosine 5'-O-[gamma-thio]triphosphate (GTPgammaS), a non-hydrolysable analogue of GTP. GTPgammaS-stimulated methyl ester group incorporation takes place on isoaspartyl residues, as attested by the alkaline sensitivity of the labelling and its competitive inhibition by L-isoaspartyl-containing peptides. GTPgammaS was the most potent nucleotide tested, whereas GDPbetaS and ATPgammaS also stimulated methylation but to a lesser extent. Maximal stimulation (5-fold) of protein L-isoaspartyl methytransferase (PIMT) activity by GTPgammaS was reached at a physiological pH in the presence of 10 mM MgCl2. Other divalent cations, such as Cu2+, Zn2+ and Co2+ (100 microM), totally inhibited GTPgammaS-dependent carboxyl methylation. The phosphotyrosine phosphatase inhibitor vanadate potentiated the GTPgammaS stimulation of PIMT activity in the kidney cytosol at a concentration lower than 40 microM, but increasing the vanadate concentration to more than 40 microM resulted in a dose-dependent inhibition of the GTPgammaS effect. The tyrosine kinase inhibitors genistein (IC50 = 4 microM) and tyrphostin (IC50 = 1 microM) abolished GTPgammaS-dependent PIMT activity by different mechanisms, as was revealed by acidic gel analysis of methylated proteins. Whereas tyrphostin stabilised the methyl ester groups, genistein acted by blocking a crucial step required for the activation of PIMT activity by GTPgammaS. The results obtained with vanadate and genistein suggest that tyrosine phosphorylation regulates GTPgammaS-stimulated PIMT activity in the kidney cytosol.  相似文献   

20.
S-adenosylmethionine, formed by the adenylation of methionine via S-adenosylmethionine synthase, is the methyl donor in virtually all known biological methylations. These methylation reactions produce a methylated substrate and S-adenosylhomocysteine, which is subsequently metabolized to homocysteine. The methylation of guanidinoacetate to form creatine consumes more methyl groups than all other methylation reactions combined. Therefore, we examined the effects of increased or decreased methyl demand by these physiological substrates on plasma homocysteine by feeding rats guanidinoacetate- or creatine-supplemented diets for 2 wk. Plasma homocysteine was significantly increased (~50%) in rats maintained on guanidinoacetate-supplemented diets, whereas rats maintained on creatine-supplemented diets exhibited a significantly lower (~25%) plasma homocysteine level. Plasma creatine and muscle total creatine were significantly increased in rats fed the creatine-supplemented or guanidinoacetate-supplemented diets. The activity of kidney L-arginine:glycine amidinotransferase, the enzyme catalyzing the synthesis of guanidinoacetate, was significantly decreased in both supplementation groups. To examine the role of the liver in mediating these changes in plasma homocysteine, isolated rat hepatocytes were incubated with methionine in the presence and absence of guanidinoacetate and creatine, and homocysteine export was measured. Homocysteine export was significantly increased in the presence of guanidinoacetate. Creatine, however, was without effect. These results suggest that homocysteine metabolism is sensitive to methylation demand imposed by physiological substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号