首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Early patterning of the vertebrate midbrain and cerebellum is regulated by a mid/hindbrain organizer that produces three fibroblast growth factors (FGF8, FGF17 and FGF18). The mechanism by which each FGF contributes to patterning the midbrain, and induces a cerebellum in rhombomere 1 (r1) is not clear. We and others have found that FGF8b can transform the midbrain into a cerebellum fate, whereas FGF8a can promote midbrain development. In this study we used a chick electroporation assay and in vitro mouse brain explant experiments to compare the activity of FGF17b and FGF18 to FGF8a and FGF8b. First, FGF8b is the only protein that can induce the r1 gene Gbx2 and strongly activate the pathway inhibitors Spry1/2, as well as repress the midbrain gene Otx2. Consistent with previous studies that indicated high level FGF signaling is required to induce these gene expression changes, electroporation of activated FGFRs produce similar gene expression changes to FGF8b. Second, FGF8b extends the organizer along the junction between the induced Gbx2 domain and the remaining Otx2 region in the midbrain, correlating with cerebellum development. By contrast, FGF17b and FGF18 mimic FGF8a by causing expansion of the midbrain and upregulating midbrain gene expression. This result is consistent with Fgf17 and Fgf18 being expressed in the midbrain and not just in r1 as Fgf8 is. Third, analysis of gene expression in mouse brain explants with beads soaked in FGF8b or FGF17b showed that the distinct activities of FGF17b and FGF8b are not due to differences in the amount of FGF17b protein produced in vivo. Finally, brain explants were used to define a positive feedback loop involving FGF8b mediated upregulation of Fgf18, and two negative feedback loops that include repression of Fgfr2/3 and direct induction of Spry1/2. As Fgf17 and Fgf18 are co-expressed with Fgf8 in many tissues, our studies have broad implications for how these FGFs differentially control development.  相似文献   

2.
Fibroblast growth factors (FGFs) are signaling molecules of the isthmic organizer, which regulates development of the midbrain and cerebellum. Tissue-specific inactivation of one of the FGF receptor (FGFR) genes, Fgfr1, in the midbrain and rhombomere 1 of the hindbrain of mouse embryos results in deletion of the inferior colliculi in the posterior midbrain and vermis of the cerebellum. Analyses of both midbrain-hindbrain and midbrain-specific Fgfr1 mutants suggest that after establishment of the isthmic organizer, FGFR1 is needed for continued response to the isthmic signals, and that it has direct functions on both sides of the organizer. In addition, FGFR1 appears to modify cell adhesion properties critical for maintaining a coherent organizing center. This may be achieved by regulating expression of specific cell-adhesion molecules at the midbrain-hindbrain border.  相似文献   

3.
The mesencephalic/rhombomere 1 border (isthmus) is an organizing center for early development of midbrain and cerebellum. In this review, we summarize recent progress in studies of Fgf signaling in the isthmus and discuss how the isthmus instructs the differentiation of the midbrain versus cerebellum. Fgf8 is shown to play a pivotal role in isthmic organizer activity. Only a strong Fgf signal mediated by Fgf8b activates the Ras-extracellular signal-regulated kinase (ERK) pathway, and this is sufficient to induce cerebellar development. A lower level of signaling transduced by Fgf8a, Fgf17 and Fgf18 induce midbrain development. Numerous feedback loops then maintain appropriate mesencephalon/rhombomere1 and organizer gene expression.  相似文献   

4.
Numerous studies have demonstrated that the midbrain and cerebellum develop from a region of the early neural tube comprising two distinct territories known as the mesencephalon (mes) and rostral metencephalon (met; rhombomere 1), respectively. Development of the mes and met is thought to be regulated by molecules produced by a signaling center, termed the isthmic organizer (IsO), which is localized at the boundary between them. FGF8 and WNT1 have been implicated as key components of IsO signaling activity, and previous studies have shown that in Wnt1(-/-) embryos, the mes/met is deleted by the 30 somite stage ( approximately E10) (McMahon, A. P. and Bradley, A. (1990) Cell 62, 1073-1085). We have studied the function of FGF8 in mouse mes/met development using a conditional gene inactivation approach. In our mutant embryos, Fgf8 expression was transiently detected, but then was eliminated in the mes/met by the 10 somite stage ( approximately E8.75). This resulted in a failure to maintain expression of Wnt1 as well as Fgf17, Fgf18, and Gbx2 in the mes/met at early somite stages, and in the absence of the midbrain and cerebellum at E17.5. We show that a major cause of the deletion of these structures is ectopic cell death in the mes/met between the 7 and 30 somite stages. Interestingly, we found that the prospective midbrain was deleted at an earlier stage than the prospective cerebellum. We observed a remarkably similar pattern of cell death in Wnt1 null homozygotes, and also detected ectopic mes/met cell death in En1 null homozygotes. Our data show that Fgf8 is part of a complex gene regulatory network that is essential for cell survival in the mes/met.  相似文献   

5.
Current evidence suggests that the anterior segment of the vertebrate hindbrain, rhombomere 1, gives rise to the entire cerebellum. It is situated where two distinct developmental patterning mechanisms converge: graded signalling from an organising centre (the isthmus) located at the midbrain/hindbrain boundary confronts segmentation of the hindbrain. The unique developmental fate of rhombomere 1 is reflected by it being the only hindbrain segment in which no Hox genes are expressed. In this study we show that ectopic FGF8 protein, a candidate for the isthmic organising activity, is able to induce and repress gene expression within the hindbrain in a manner appropriate to rhombomere 1. Using a heterotopic, heterospecific grafting strategy we demonstrate that rhombomere 1 is able to express Hox genes but that both isthmic tissue and FGF8 inhibit their expression. Inhibition of FGF8 function in vivo shows that it is responsible for defining the anterior limit of Hox gene expression within the developing brain and thereby specifies the extent of the rl territory. Previous studies have suggested that a retinoid morphogen gradient determines the axial limit of expression of individual Hox genes within the hindbrain. We propose a model whereby activation by retinoids is antagonised by inhibition by FGF8 in the anterior hindbrain to set aside the territory from which the cerebellum will develop.  相似文献   

6.
The cerebellum comprises a medial domain, called the vermis, flanked by two lateral subdivisions, the cerebellar hemispheres. Normal development of the vermis involves fusion of two lateral primordia on the dorsal midline. We investigated how the cerebellum fuses on the midline by combining a study of mid/hindbrain cell movements in avian embryos with the analysis of cerebellar fusion in normal and mutant mouse embryos. We found that, in avian embryos, divergent cell movements originating from a restricted medial domain located at the mid/hindbrain boundary produce the roof plate of the mid/hindbrain domain. Cells migrating anteriorly from this region populate the caudal midbrain roof plate whereas cells migrating posteriorly populate the cerebellar roof plate. In addition, the adjacent paramedial isthmic neuroepithelium also migrates caudalward and participates in the formation of the cerebellar midline region. We also found that the paramedial isthmic territory produces two distinct structures. First, the late developing velum medullaris that intervenes between the vermis and the midbrain, and second, a midline domain upon which the cerebellum fuses. Elimination or overgrowth of this isthmic domain in Wnt1(sw/sw) and En1(+/Otx2lacZ) mutant mice, respectively, impair cerebellar midline fusion. Because the isthmus-derived midline cerebellar domain displays a distinct expression pattern of genes involved in BMP signaling, we propose that the isthmus-derived cells provide both a substratum and signals that are essential for cerebellar fusion.  相似文献   

7.
Fibroblast growth factors (FGFs) and regulators of the FGF signalling pathway are expressed in several cell types within the cerebellum throughout its development. Although much is known about the function of this pathway during the establishment of the cerebellar territory during early embryogenesis, the role of this pathway during later developmental stages is still poorly understood. Here, we investigated the function of sprouty genes (Spry1, Spry2 and Spry4), which encode feedback antagonists of FGF signalling, during cerebellar development in the mouse. Simultaneous deletion of more than one of these genes resulted in a number of defects, including mediolateral expansion of the cerebellar vermis, reduced thickness of the granule cell layer and abnormal foliation. Analysis of cerebellar development revealed that the anterior cerebellar neuroepithelium in the early embryonic cerebellum was expanded and that granule cell proliferation during late embryogenesis and early postnatal development was reduced. We show that the granule cell proliferation deficit correlated with reduced sonic hedgehog (SHH) expression and signalling. A reduction in Fgfr1 dosage during development rescued these defects, confirming that the abnormalities are due to excess FGF signalling. Our data indicate that sprouty acts both cell autonomously in granule cell precursors and non-cell autonomously to regulate granule cell number. Taken together, our data demonstrate that FGF signalling levels have to be tightly controlled throughout cerebellar development in order to maintain the normal development of multiple cell types.  相似文献   

8.
Gbx2 is a homeobox gene that plays a crucial role in positioning the mid/hindbrain organizer (isthmus), which regulates midbrain and cerebellar development primarily through the secreted factor FGF8. In Gbx2 null homozygotes, rhombomeres (r) 1-3 fail to develop and the isthmic expression of Fgf8 is reduced and disorganized. These mutants fail to form a cerebellum, as it is derived from r1. Here, we analyze mice homozygous for a Gbx2 hypomorphic allele (Gbx2(neo)). Quantitative RT-PCR and RNA in situ analyses indicate that the presence of a neo-resistance cassette impairs normal Gbx2 splicing thus reducing wild-type Gbx2 mRNA levels to 6-10% of normal levels in all domains and stages examined. In Gbx2 hypomorphic mutants, gene marker and neuronal patterning analyses indicate that reduced Gbx2 expression is sufficient to support the development of r3 but not r2. The posterior region of r1, from which the lateral cerebellum develops, is unaffected in these mutants. However, the anterior region of r1 is converted to an isthmus-like tissue. Hence, instead of expressing r1 markers, this region displays robust expression of Fgf8 and Fgf17, as well as the downstream FGF targets Spry1 and Spry4. Additionally, we demonstrate that the cell division regulator cyclin D2 is downregulated, and that cellular proliferation is reduced in both the normal isthmus and in the mutant anterior r1. As a result of this transformation, the cerebellar midline fails to form. Thus, our studies demonstrate different threshold requirements for the level of Gbx2 gene product in different regions of the hindbrain.  相似文献   

9.
The segmentation of the vertebrate hindbrain into rhombomeres is highly conserved, but how early hindbrain patterning is established is not well understood. We show that rhombomere 4 (r4) functions as an early-differentiating signaling center in the zebrafish hindbrain. Time-lapse analyses of zebrafish hindbrain development show that r4 forms first and hindbrain neuronal differentiation occurs first in r4. Two signaling molecules, FGF3 and FGF8, which are both expressed early in r4, are together required for the development of rhombomeres adjacent to r4, particularly r5 and r6. Transplantation of r4 cells can induce expression of r5/r6 markers, as can misexpression of either FGF3 or FGF8. Genetic mosaic analyses also support a role for FGF signaling acting from r4. Taken together, our findings demonstrate a crucial role for FGF-mediated inter-rhombomere signaling in promoting early hindbrain patterning and underscore the significance of organizing centers in patterning the vertebrate neural plate.  相似文献   

10.
Fibroblast growth factor (FGF) signaling is essential for vertebrate organogenesis, including mammary gland development. The mechanism whereby FGF signaling is regulated in the mammary gland, however, has remained unknown. Using a combination of mouse genetics and 3D ex vivo models, we tested the hypothesis that Spry2 gene, which encodes an inhibitor of signaling via receptor tyrosine kinases (RTKs) in certain contexts, regulates FGF signaling during mammary branching. We found that Spry2 is expressed at various stages of the developing mammary gland. Targeted removal of Spry2 function from mammary epithelium leads to accelerated epithelial invasion. Spry2 is up-regulated by FGF signaling activities and its loss sensitizes mammary epithelium to FGF stimulation, as indicated by increased expression of FGF target genes and epithelia invasion. By contrast, Spry2 gain-of-function in the mammary epithelium results in reduced FGF signaling, epithelial invasion, and stunted branching. Furthermore, reduction of Spry2 expression is correlated with tumor progression in the MMTV-PyMT mouse model. Together, the data show that FGF signaling modulation by Spry2 is essential for epithelial morphogenesis in the mammary gland and it functions to protect the epithelium against tumorigenesis.  相似文献   

11.
12.
Unlike humans, who have a continuous row of teeth, mice have only molars and incisors separated by a toothless region called a diastema. Although tooth buds form in the embryonic diastema, they regress and do not develop into teeth. Here, we identify members of the Sprouty (Spry) family, which encode negative feedback regulators of fibroblast growth factor (FGF) and other receptor tyrosine kinase signaling, as genes that repress diastema tooth development. We show that different Sprouty genes are deployed in different tissue compartments--Spry2 in epithelium and Spry4 in mesenchyme--to prevent diastema tooth formation. We provide genetic evidence that they function to ensure that diastema tooth buds are refractory to signaling via FGF ligands that are present in the region and thus prevent these buds from engaging in the FGF-mediated bidirectional signaling between epithelium and mesenchyme that normally sustains tooth development.  相似文献   

13.
Effective induction of midbrain-specific dopamine (mDA) neurons from stem cells is fundamental for realizing their potential in biomedical applications relevant to Parkinson's disease. During early development, the Otx2-positive neural tissues are patterned anterior-posteriorly to form the forebrain and midbrain under the influence of extracellular signaling such as FGF and Wnt. In the mesencephalon, sonic hedgehog (Shh) specifies a ventral progenitor fate in the floor plate region that later gives rise to mDA neurons. In this study, we systematically investigated the temporal actions of FGF signaling in mDA neuron fate specification of mouse and human pluripotent stem cells and mouse induced pluripotent stem cells. We show that a brief blockade of FGF signaling on exit of the lineage-primed epiblast pluripotent state initiates an early induction of Lmx1a and Foxa2 in nascent neural progenitors. In addition to inducing ventral midbrain characteristics, the FGF signaling blockade during neural induction also directs a midbrain fate in the anterior-posterior axis by suppressing caudalization as well as forebrain induction, leading to the maintenance of midbrain Otx2. Following a period of endogenous FGF signaling, subsequent enhancement of FGF signaling by Fgf8, in combination with Shh, promotes mDA neurogenesis and restricts alternative fates. Thus, a stepwise control of FGF signaling during distinct stages of stem cell neural fate conversion is crucial for reliable and highly efficient production of functional, authentic midbrain-specific dopaminergic neurons. Importantly, we provide evidence that this novel, small-molecule-based strategy applies to both mouse and human pluripotent stem cells.  相似文献   

14.
The sense of taste is fundamental to our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Sensory taste buds are housed in papillae that develop from epithelial placodes. Three distinct types of gustatory papillae reside on the rodent tongue: small fungiform papillae are found in the anterior tongue, whereas the posterior tongue contains the larger foliate papillae and a single midline circumvallate papilla (CVP). Despite the great variation in the number of CVPs in mammals, its importance in taste function, and its status as the largest of the taste papillae, very little is known about the development of this structure. Here, we report that a balance between Sprouty (Spry) genes and Fgf10, which respectively antagonize and activate receptor tyrosine kinase (RTK) signaling, regulates the number of CVPs. Deletion of Spry2 alone resulted in duplication of the CVP as a result of an increase in the size of the placode progenitor field, and Spry1(-/-);Spry2(-/-) embryos had multiple CVPs, demonstrating the redundancy of Sprouty genes in regulating the progenitor field size. By contrast, deletion of Fgf10 led to absence of the CVP, identifying FGF10 as the first inductive, mesenchyme-derived factor for taste papillae. Our results provide the first demonstration of the role of epithelial-mesenchymal FGF signaling in taste papilla development, indicate that regulation of the progenitor field size by FGF signaling is a critical determinant of papilla number, and suggest that the great variation in CVP number among mammalian species may be linked to levels of signaling by the FGF pathway.  相似文献   

15.
16.
In looking for novel factors involved in the regulation of the fibroblast growth factor (FGF) signaling pathway, we have isolated a zebrafish sprouty4 gene, based on its extensive similarities with the expression patterns of both fgf8 and fgf3. Through gain- and loss-of-function experiments, we demonstrate that Fgf8 and Fgf3 act in vivo to induce the expression of Spry4, which in turn can inhibit activity of these growth factors. When overexpressed at low doses, Spry4 induces loss of cerebellum and reduction in size of the otic vesicle, thereby mimicking the fgf8/acerebellar mutant phenotype. Injections of high doses of Spry4 cause ventralization of the embryo, an opposite phenotype to the dorsalisation induced by overexpression of Fgf8 or Fgf3. Conversely we have shown that inhibition of Spry4 function through injection of antisense morpholino oligonucleotide leads to a weak dorsalization of the embryo, the phenotype expected for an upregulation of Fgf8 or Fgf3 signaling pathway. Finally, we show that Spry4 interferes with FGF signaling downstream of the FGF receptor 1 (FGFR1). In addition, our analysis reveals that signaling through FGFR1/Ras/mitogen-activated protein kinase pathway is involved, not in mesoderm induction, but in the control of the dorsoventral patterning via the regulation of bone morphogenetic protein (BMP) expression.  相似文献   

17.
In the previous studies, we showed that strong Fgf8 signaling activates the Ras-ERK pathway to induce cerebellum. Here, we show importance of negative regulation following activation of this pathway for proper regionalization of mesencephalon and metencephalon in chick embryos. ‘Prolonged’ activation of ERK by misexpression of Fgf8b and dominant-negative Sprouty2 (dnSprouty2) did not change the fate of the mesencephalic alar plate. Downregulation of ERK activity using an MEK inhibitor, U0126, or by tetracycline-dependent Tet-off system after co-expression of Fgf8b and dnSprouty2 forced the mesencephalic alar plate to differentiate into cerebellum. We then paid attention to Mkp3. After misexpression of dnMkp3 and Fgf8b, slight downregulation of ERK activity occurred, which may be due to Sprouty2, and the mesencephalon transformed to the isthmus-like structure. The results indicate that ERK must be once upregulated and then be downregulated for cerebellar differentiation and that differential ERK activity level established by negative regulators receiving Fgf8 signal may determine regional specificity of mesencephalon and metencephalon.  相似文献   

18.
Members of the fibroblast growth factor (FGF) family of peptide growth factors are widely expressed in the germ layer derivatives during gastrulation and early organogenesis of the mouse. We have investigated the effect of administering recombinant FGF-4 in the late-primitive streak stage embryo to test if the patterning of the body plan may be influenced by this growth factor. Shortly after FGF treatment the embryonic tissues up-regulated the expression of Brachyury and the RTK signaling regulator Spry2, suggesting that FGF signaling was activated as an immediate response to exogenous FGF. Concomitantly, Hesx1 expression was suppressed in the prospective anterior region of the embryo. After 24 h of in vitro development, embryos displayed a dosage-related suppression of forebrain morphogenesis, disruption of the midbrain-hindbrain partition, and inhibition of the differentiation of the embryonic mesoderm. Overall, development of the anterior-posterior axis in the late gastrula is sensitive to the delivery of exogenous FGF-4. The early response associated with the expression of Spry2 suggests that the later phenotype observed could be primarily related to an inhibition of the FGF signaling pathway.  相似文献   

19.
The roof plate (RP) of the midbrain shows an unusual plasticity, as it is duplicated or interrupted by experimental manipulations involving the mid/hindbrain organizer or FGF8. In previous experiments, we have found that FGF8 induces a local patterning center, the isthmic node, that is essential for the local development of a RP. Here, we show that the plasticity of the midbrain RP derives from two apparently antagonistic influences of FGF8. On the one hand, FGF8 widens beyond the neural folds the competence of the neuroepithelium to develop a RP by inducing the expression of LMX1B and WNT1. Ectopic overexpression of these two factors is sufficient to induce widely the expression of markers of the mature RP in the midbrain. On the other hand, FGF8 exerts a major destabilizing influence on RP maturation by controlling signaling by members of the TGFbeta superfamily belonging to the BMP, GDF and activin subgroups. We show in particular that FGF8 tightly modulates follistatin expression, thus progressively restraining the inhibitory influence of activin B on RP differentiation. These regulations, together with FGF8 triggered apoptosis, allow the formation of a RP progress zone at some distance from the FGF8 source. Posterior elongation of the RP is permitted when the source of FGF8 withdraws. Growth of the posterior midbrain neuroepithelium and convergent extension movements induced by FGF8 both contribute to increase the distance between the source of FGF8 and the maturing RP. Normally, the antagonistic regulatory interactions spread smoothly across the midbrain. Plasticity of midbrain RP differentiation probably results from an experimentally induced imbalance between regulatory pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号