共查询到20条相似文献,搜索用时 15 毫秒
1.
Saha PK Kojima H Martinez-Botas J Sunehag AL Chan L 《The Journal of biological chemistry》2004,279(34):35150-35158
2.
3.
L. Tang Y. Tong H. Cao S. Xie Q. Yang F. Zhang Q. Zhu L. Huang Q. Lü Y. Yang D. Li M. Chen C. Yu W. Jin Y. Yuan N. Tong 《Gene》2014
Background
Polymorphism of rs2293855 in gene MTMR9 has been associated with obesity and metabolic syndrome. We aim to study the association of rs2293855 with type 2 diabetes mellitus (T2DM) intermediate phenotypes in a Han Chinese population.Methods
The polymorphism was genotyped in 838 Han Chinese individuals using Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS); all participants underwent a 75 g oral glucose tolerance test (OGTT); associations between the polymorphism and glucose tolerance, indices of insulin secretion and indices of insulin sensitivity were analyzed.Results
The frequency of genotypes and alleles differed significantly between normal glucose tolerance and prediabetes (P = 0.043 and P = 0.009, respectively). The GG homozygous presented higher fasting plasma glucose (P = 0.009), higher 2-hour plasma glucose (P = 0.024) and higher glucose area under the curve (AUC, P = 0.01). Moreover, the G allele of rs2293855 was associated with glucose intolerance (fasting glucose, P = 0.012; glucose AUC, P = 0.006; 2-h glucose, P = 0.024); it is also associated with decreased indices of insulin sensitivity (fasting insulin, P = 0.043; insulin sensitivity index composite, P = 0.009; homeostasis model assessment of insulin resistance, HOMA-IR, P = 0.008) and decreased indices of insulin secretion (HOMA of beta cell function, HOMA-B, P = 0.028; insulinogenic index, P = 0.003). In addition, the minor allele G was also associated with increased risk of prediabetes (OR = 1.463, 95%CI: 1.066–2.009, P = 0.018).Conclusions
Polymorphism of rs2293855 in MTMR9 is associated with measures of glucose tolerance, indices of insulin secretion and indices of insulin sensitivity. We also suggest that allele G is likely to increase the risk of prediabetes by influencing both insulin secretion and insulin sensitivity. 相似文献4.
Hypoglycemia is associated with increased risk of cardiovascular adverse clinical outcomes. There is evidence that impaired glucose tolerance (IGT) is associated with cardiovascular morbidity and mortality. Whether IGT individuals have asymptomatic hypoglycemia under real-life conditions that are related to early atherosclerosis is unknown. To this aim, we measured episodes of hypoglycemia during continuous interstitial glucose monitoring (CGM) and evaluated their relationship with early manifestation of vascular atherosclerosis in glucose tolerant and intolerant individuals. An oral glucose tolerance test (OGTT) was performed in 79 non-diabetic subjects. Each individual underwent continuous glucose monitoring for 72 h. Cardiovascular risk factors and ultrasound measurement of carotid intima-media thickness (IMT) were evaluated. IGT individuals had a worse cardiovascular risk profile, including higher IMT, and spent significantly more time in hypoglycemia than glucose-tolerant individuals. IMT was significantly correlated with systolic (r = 0.22; P = 0.05) and diastolic blood pressure (r = 0.28; P = 0.01), total (r = 0.26; P = 0.02) and LDL cholesterol (r = 0.27; P = 0.01), 2-h glucose (r = 0.39; P<0.0001), insulin sensitivity (r = −0.26; P = 0.03), and minutes spent in hypoglycemia (r = 0.45; P<0.0001). In univariate analyses adjusted for gender, minutes spent in hypoglycemia were significantly correlated with age (r = 0.26; P = 0.01), waist circumference (r = 0.33; P = 0.003), 2-h glucose (r = 0.58; P<0.0001), and 2-h insulin (r = 0.27; P = 0.02). In a stepwise multivariate regression analysis, the variables significantly associated with IMT were minutes spent in hypoglycemia (r2 = 0.252; P<0.0001), and ISI index (r2 = 0.089; P = 0.004), accounting for 34.1% of the variation. Episodes of hypoglycemia may be considered as a new potential cardiovascular risk factor for IGT individuals. 相似文献
5.
Xie Y Newberry EP Young SG Robine S Hamilton RL Wong JS Luo J Kennedy S Davidson NO 《The Journal of biological chemistry》2006,281(7):4075-4086
Microsomal TG transfer protein (MTTP) is required for the assembly and secretion of TG (TG)-rich lipoproteins from both enterocytes and hepatocytes. Liver-specific deletion of Mttp produced a dramatic reduction in plasma very low density lipoprotein-TG and virtually eliminated apolipoprotein B100 (apoB100) secretion yet caused only modest reductions in plasma apoB48 and apoB48 secretion from primary hepatocytes. These observations prompted us to examine the phenotype following intestine-specific Mttp deletion because murine, like human enterocytes, secrete virtually exclusively apoB48. We generated mice with conditional Mttp deletion in villus enterocytes (Mttp-IKO), using a tamoxifen-inducible, intestine-specific Cre transgene. Villus enterocytes from chow-fed Mttp-IKO mice contained large cytoplasmic TG droplets and no chylomicron-sized particles within the secretory pathway. Chow-fed, Mttp-IKO mice manifested steatorrhea, growth arrest, and decreased cholesterol absorption, features that collectively recapitulate the phenotype associated with abetalipoproteinemia. Chylomicron secretion was reduced dramatically in vivo, in conjunction with an approximately 80% decrease in apoB48 secretion from primary enterocytes. Additionally, although plasma and hepatic cholesterol and TG content were decreased, Mttp-IKO mice demonstrated a paradoxical increase in both hepatic lipogenesis and very low density lipoprotein secretion. These findings establish distinctive features for MTTP involvement in intestinal chylomicron assembly and secretion and suggest that hepatic lipogenesis undergoes compensatory induction in the face of defective intestinal TG secretion. 相似文献
6.
Hypertriglyceridemia is associated with prebeta-HDL concentrations in subjects with familial low HDL
Söderlund S Soro-Paavonen A Ehnholm C Jauhiainen M Taskinen MR 《Journal of lipid research》2005,46(8):1643-1651
Prebeta-HDL particles act as the primary acceptors of cellular cholesterol in reverse cholesterol transport (RCT). An impairment of RCT may be the reason for the increased risk of coronary heart disease (CHD) in subjects with familial low HDL. We studied the levels of serum prebeta-HDL and the major regulating factors of HDL metabolism in 67 subjects with familial low HDL and in 64 normolipidemic subjects. We report that the subjects with familial low HDL had markedly reduced prebeta-HDL concentrations compared with the normolipidemic subjects (17.4 +/- 7.2 vs. 23.4 +/- 7.8 mg apolipoprotein A-I/dl; P < 0.001). A positive correlation was observed between prebeta-HDL concentration and serum triglyceride (TG) level (r = 0.334, P = 0.006). In addition, serum TG level was found to be the strongest predictor of prebeta-HDL concentration in subjects with familial low HDL. The activities of cholesteryl ester transfer protein and hepatic lipase were markedly increased in subjects with familial low HDL without a significant correlation to prebeta-HDL concentration. Our results support the hypothesis that impaired RCT is one mechanism behind the increased risk for CHD in subjects with familial low HDL. 相似文献
7.
Muratsubaki H Enomoto K Ichijoh Y Yamamoto Y 《Archives of physiology and biochemistry》2003,111(5):449-454
Exposure of sated rats to 45% N2 in air for 5h increased serum triglyceride levels by 212% over the levels in normoxic rats. This increase in triglyceride levels was accompanied by a decrease in plasma triglyceride hydrolase activity after intravenous injection of heparin. Further fractionation of the activity by inhibition of lipoprotein lipase indicated that the low triglyceride hydrolase activity is mainly due to a reduction in hepatic triglyceride lipase, which is inversely correlated with the serum triglyceride level. The hypoxic exposure decreased the arterial blood [acetoacetate]/[beta-hydroxybutyrate] ratio in the sated rats, which is believed to reflect the oxidation-reduction state in hepatic mitochondria, but did not affect the level of serum enzymes indicative of tissue damage. On the other hand, triglyceride levels did not change during hypoxic exposure in fasted rats. Thus, hypertriglyceridemia in sated rats following exposure to hypoxia may result from impaired removal of circulating triglycerides by hepatic triglyceride lipase located in the sinusoidal surface of the liver. 相似文献
8.
The mechanisms by which acute administration of methapyrilene, an H(1)-receptor antihistamine causes periportal necrosis to rats are unknown. This study investigated the role of the hepato-biliary system in methapyrilene hepatotoxicity following daily administration of 150 mg/kg per day over 3 consecutive days. Biliary metabolites of methapyrilene were tentatively identified. In male Han Wistar rats administration of methapyrilene significantly increased hepatic reduced glutathione (GSH) to 140% of control levels 24 h following the last dose. There were no significant changes in the activities of glutathione-related enzymes, glutathione peroxidase (GPx) and reductase (GSH), glutathione S-transferase (GST), and gamma-glutamyl cysteine synthetase (gamma-GCS) over 3 days of methapyrilene administration. Methapyrilene treatment resulted in no significant increase in excretion of biliary oxidized glutathione (GSSG), a sensitive marker of oxidative stress in vivo, following the third dose. [3H]Methapyrilene-derived radioactivity was detected in bile, to a greater extent than in feces, indicating that methapyrilene and/or metabolites underwent enterohepatic recirculation. Cannulation and exteriorization of the bile duct (to interrupt enterohepatic recirculation) afforded some protection against the hepatotoxicity, assessed by clinical chemistry and histopathology. Liquid chromatography-mass spectrometry (LC-MS) analysis of bile indicated the presence of unmetabolized methapyrilene, methapyrilene O-glucuronide and desmethyl methapyrilene O-glucuronide. These data demonstrate that acute methapyrilene hepatotoxicity in vivo is not a consequence of GSH depletion, or oxidative stress, but that enterohepatic recirculation of biliary metabolites may be important. Progressive exposure to non-oxidizing, reactive metabolic intermediates may be responsible for hepatotoxicity. 相似文献
9.
10.
11.
12.
13.
Impaired glucose tolerance (IGT) is not associated with disturbed homocysteine metabolism 总被引:1,自引:0,他引:1
Summary. Elevated plasma total homocysteine (tHcy) has been suggested to be an additional risk factor for cardiovascular disease in
subjects with impaired glucose tolerance (IGT) and Type 2 diabetes (T2D). In order to investigate whether an insulin resistant/chronic
hyperinsulinemic situation in male diabetic and prediabetic subjects directly influences the tHcy metabolism, fasting tHcy
and post-methionine load tHcy plasma levels (PML-tHcy) were determined in 15 men with IGT, 13 men with newly dia-gnosed T2D,
and 16 normoglycemic controls (NGT). Fasting tHcy (IGT, 13.1 ± 4.6; T2D, 12.8 ± 4.0; NGT, 10.7 ± 4.4 μmol/L) and PML-tHcy (IGT, 46.5 ± 17.39; T2D, 41.1 ± 6.8; NGT, 38.0 ± 9.7 μmol/L) showed no differences between the groups. Fasting tHcy and PML-tHcy correlated with fasting proinsulin (r = 0.395,
p < 0.05; r = 0.386, p< 0.05) and creatinine (r = 0.489, p < 0.01; r = 0.339, p < 0.05), resp. Multiple regression analysis
showed only a relationship between fasting tHcy and creatinine. No relationships have been found between fasting tHcy and
PML-tHcy, resp., and indicators of an insulin resistant state, e.g., insulin and proinsulin, as well as serum cobalamin and
folate concentrations. In conclusion, our data suggest that the degree of glucose intolerance has no direct impact on the
metabolism of homocysteine. However, tHcy levels tend to be elevated with the development of nephropathy, indicating an association
between tHcy and renal function in these subjects.
Received May 11, 1999 相似文献
14.
Deletion of Gab1 in the liver leads to enhanced glucose tolerance and improved hepatic insulin action 总被引:3,自引:0,他引:3
Insulin receptor substrate-1 (IRS-1) and IRS-2 are known to transduce and amplify signals emanating from the insulin receptor. Here we show that Grb2-associated binder 1 (Gab1), despite its structural similarity to IRS proteins, is a negative modulator of hepatic insulin action. Liver-specific Gab1 knockout (LGKO) mice showed enhanced hepatic insulin sensitivity with reduced glycemia and improved glucose tolerance. In LGKO liver, basal and insulin-stimulated tyrosine phosphorylation of IRS-1 and IRS-2 was elevated, accompanied by enhanced Akt/PKB activation. Conversely, Erk activation by insulin was suppressed in LGKO liver, leading to defective IRS-1 Ser612 phosphorylation. Thus, Gab1 acts to attenuate, through promotion of the Erk pathway, insulin-elicited signals flowing through IRS and Akt proteins, which represents a novel balancing mechanism for control of insulin signal strength in the liver. 相似文献
15.
Gottschalk S Zwingmann C Raymond VA Hohnholt MC Chan TS Bilodeau M 《Apoptosis : an international journal on programmed cell death》2012,17(2):143-153
Hepatocyte death due to apoptosis is a hallmark of almost every liver disease. Manipulation of cell death regulatory steps
during the apoptotic process is therefore an obvious goal of biomedical research. To clarify whether metabolic changes occur
prior to the characteristic apoptotic events, we used ex vivo multinuclear NMR-spectroscopy to study metabolic pathways of
[U-13C]glucose in mouse liver during Fas-induced apoptosis. We addressed whether these changes could be associated with protection
against apoptosis afforded by Epidermal Growth Factor (EGF). Our results show that serum alanine and aspartate aminotransferase
levels, caspase-3 activity, BID cleavage and changes in cellular energy stores were not observed before 3 h following anti-Fas
injection. However, as early as 45 min after anti-Fas treatment, we observed upregulation of carbon entry (i.e. flux) from
glucose into the Krebs-cycle via pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PC) (up to 139% and 123% of controls,
respectively, P < 0.001). This was associated with increased glutathione synthesis. EGF treatment significantly attenuated Fas-induced apoptosis,
liver injury and the late decrease in energy stores, as well as the early fluxes through PDH and PC which were comparable
to untreated controls. Using ex vivo multinuclear NMR-spectroscopic analysis, we have shown that Fas receptor activation in
mouse liver time-dependently affects specific metabolic pathways of glucose. These early upregulations in glucose metabolic
pathways occur prior to any visible signs of apoptosis and may have the potential to contribute to the initiation of apoptosis
by maintaining mitochondrial energy production and cellular glutathione stores. 相似文献
16.
Marzia M Guaiquil V Horne WC Blobel CP Baron R Chiusaroli R 《Biological chemistry》2011,392(10):877-885
The ADAMs (a disintegrin and metalloprotease) contribute to various biological functions including the development of tissues by taking part in cell-cell and cell-matrix interactions. We previously found that ADAM15 is prominently expressed in osteoblasts and to a lesser extent in osteoclasts. The aim of this study was to investigate a possible function of ADAM15 in bone. Adult ADAM15(-/-) mice displayed an increase in bone volume and thickness with an increase in the number and activity of osteoblasts, whereas osteoclasts were apparently unaffected. We found an increase in proliferation, alkaline phosphatase (ALP) staining and nodule deposition, and mineralization in cultures of ADAM15(-/-) osteoblasts compared to wild-type osteoblasts. We also observed an increase in β-catenin immunoreactivity in the nucleus of ADAM15(-/-) osteoblasts compared to wild-type, whereas β-catenin in the membrane/cytoplasm compartment appeared to undergo increased degradation. Furthermore, cyclin D1 and c-Jun, known downstream targets of β-catenin and effectors of cell activation, were found up-regulated in absence of ADAM15. This study indicates that ADAM15 is required for normal skeletal homeostasis and that its absence causes increased nuclear translocation of β-catenin in osteoblasts leading to increased osteoblast proliferation and function, which results in higher trabecular and cortical bone mass. 相似文献
17.
Salt tolerance of Beta macrocarpa is associated with efficient osmotic adjustment and increased apoplastic water content 下载免费PDF全文
I. Hamouda M. Badri M. Mejri C. Cruz K. H. M. Siddique K. Hessini 《Plant biology (Stuttgart, Germany)》2016,18(3):369-375
The chenopod Beta macrocarpa Guss (wild Swiss chard) is known for its salt tolerance, but the mechanisms involved are still debated. In order to elucidate the processes involved, we grew wild Swiss chard exposed to three salinity levels (0, 100 and 200 mm NaCl) for 45 days, and determined several physiological parameters at the end of this time. All plants survived despite reductions in growth, photosynthesis and stomatal conductance in plants exposed to salinity (100 and 200 mm NaCl). As expected, the negative effects of salinity were more pronounced at 200 mm than at 100 mm NaCl: (i) leaf apoplastic water content was maintained or increased despite a significant reduction in leaf water potential, revealing the halophytic character of B. macrocarpa; (ii) osmotic adjustment occurred, which presumably enhanced the driving force for water extraction from soil, and avoided toxic build up of Na+ and Cl– in the mesophyll apoplast of leaves. Osmotic adjustment mainly occurred through accumulation of inorganic ions and to a lesser extent soluble sugars; proline was not implicated in osmotic adjustment. Overall, two important mechanisms of salt tolerance in B. macrocarpa were identified: osmotic and apoplastic water adjustment. 相似文献
18.
19.
20.
Susan Walker Mark Danton Edward Weng Koon Peng Fiona Lyall 《Cell stress & chaperones》2013,18(3):269-277
Tetralogy of Fallot (TOF) is a congenital heart condition in which the right ventricle is exposed to cyanosis and pressure overload. Patients have an increased risk of right ventricle dysfunction following corrective surgery. Whether the cyanotic myocardium is less tolerant of injury compared to non-cyanotic is unclear. Heat shock proteins (HSPs) protect against cellular stresses. The aim of this study was to examine HSP 27 expression in the right ventricle resected from TOF patients and determine its relationship with right ventricle function and clinical outcome. Ten cyanotic and ten non-cyanotic patients were studied. Western blotting was used to quantify HSP 27 in resected myocardium at (1) baseline (first 15 min of aortic cross clamp and closest representation of pre-operative status) and (2) after 15 min during ischemia until surgery was complete. The cyanotic group had significantly increased haematocrit, lower O2 saturation, thicker interventricular septal wall thickness and released more troponin-I on post-operative day 1 (p?<?0.05). HSP 27 expression was significantly increased in the <15 min cyanotic compared to the <15 min non-cyanotic group (p?=?0.03). In the cyanotic group, baseline HSP 27 expression also significantly correlated with oxygen extraction ratio (p?=?0.028), post-operative basal septal velocity (p?=?0.036) and mixed venous oxygen saturation (p?=?0.02), markers of improved cardiac output/contraction. Increased HSP 27 expression and associated improved right ventricle function and systemic perfusion supports a cardio-protective effect of HSP 27 in cyanotic TOF. 相似文献