共查询到20条相似文献,搜索用时 15 毫秒
1.
The gsdA gene of the extreme thermophilic bacterium Aquifex aeolicus, encoding glucose-6-phosphate dehydrogenase (G6PDH), was cloned into a high-expression vector and overexpressed as a fusion protein in Escherichia coli. Here we report the characterization of this recombinant thermostable G6PDH. G6PDH was purified to homogeneity by heat precipitation followed by immobilized metal affinity chromatography on a nickel-chelate column. The data obtained indicate that the enzyme is a homodimer with a subunit molecular weight of 55 kDa. G6PDH followed Michaelis-Menten kinetics with a K(M) of 63 micro M for glucose-6-phosphate at 70 degrees C with NADP as the cofactor. The enzyme exhibited dual coenzyme specificity, although it showed a preference in terms of k(cat)/ K(M) of 20.4-fold for NADP over NAD at 40 degrees C and 5.7-fold at 70 degrees C. The enzyme showed optimum catalytic activity at 90 degrees C. Modeling of the dimer interface suggested the presence of cysteine residues that may form disulfide bonds between the two subunits, thereby preserving the oligomeric integrity of the enzyme. Interestingly, addition of dithiothreitol or mercaptoethanol did not affect the activity of the enzyme. With a half-life of 24 h at 90 degrees C and 12 h at 100 degrees C, this is the most thermostable G6PDH described. 相似文献
2.
3.
4.
5.
Glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP oxidoreductase, EC 1.1.1.49) has been purified to electrophoretic homogeneity from pea chloroplasts. The enzyme, which has a Stokes radius of 52 Å, is a tetramer made up of four 56000 Da monomers. The pH optimum is around 8.2. The enzyme is absolutely specific for NADP. The apparent Km(NADP) is 2.4 ± 0.1 μM. NADPH inhibition of the enzyme is competitive with respect to NADP (mean Ki, 18 ± 5 μM) and is mixed (Kp >Km, Vmax >Vp) with respect to glucose 6-phosphate (mean crossover point, 0.5 ± 0.1 mM). The apparent Km(glucose 6-phosphate) is 0.37 ± 0.01 mM. The purified enzyme is inactivated in the light in the presence of dilute stroma and washed thylakoids, and by dithiothreitol. Enzyme which has been partially inactivated by treatment with dithiothreitol can be further inactivated in the light in the presence of dilute stroma and washed thylakoids and reactivated in the dark, but only to the extent of the reverse of light inactivation. Dithiothreitol-inactivated enzyme is not reactivated further by addition of crude stroma or oxidized thioredoxin. Dithiothreitol-dependent inactivation of the enzyme follows pseudo-first-order kinetics and shows rate saturation. The enzyme which has been partially inactivated by treatment with dithiothreitol does not differ from the untreated control with respect to thermal and tryptic inactivation. However, enzyme which has been partially light inactivated shows different thermal and tryptic inactivation patterns as compared to the dark control. These observations suggest that the changes in the enzyme brought about by light modulation are not necessarily identical with those brought about by dithiothreitol inactivation. 相似文献
6.
7.
We studied the maternal effect for two enzymes of the pentose cycle, 6-phosphogluconate dehydrogenase (6PGD) and glucose-6-phosphate dehydrogenase (G6PD), using a genetic system based on the interaction of Pgd? and Zw? alleles, which inactivate 6PGD and G6PD, respectively. The presence and formation of the enzymes was investigated in those individuals that had not received the corresponding genes from the mother. We revealed maternal forms of the enzymes, detectable up to the pupal stage. The activities of “maternal” 6PGD and G6PD per individual increased 20-fold to 30-fold from the egg stage to the 3rd larval instar even in the absence of normal Pgd and Zw genes. Immunologic studies have shown that the increase in 6PGD activity is due to an accumulation of the maternal form of the enzyme molecules. We revealed a hybrid isozyme resulting from an aggregation of the subunits of isozymes controlled by the genes of the mother and embryo itself. These results indicate that the maternal effect in the case of 6PGD is due to a long-lived stable mRNA transmitted with the egg cytoplasm and translated during the development of Drosophila melanogaster. 相似文献
8.
9.
10.
11.
《Biochimica et Biophysica Acta (BBA) - Enzymology》1976,422(2):249-253
It has been suggested by some authors that during amphibian development, due to the higher glucose-6-phosphate dehydrogenase (EC 1.1.1.49) activity compared to that of 6-phosphogluconate dehydrogenase (EC 1.1.1.43), 6-phosphogluconate could accumulate in the embryo tissues and regulate the channelling of glucose-6-phosphate into glycolysis. Here, on the base of the specific activities of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and glucose-6-phosphate isomerase (EC 5.3.1.9) found in the embryos of Bufo bufo during development, it is discussed whether 6-phosphogluconate can accumulate and play a regulative role on glucose-6-phosphate metabolism in the anuran embryo. 相似文献
12.
Andrzej L. Pawlak Zbigniew Zagórski Danuta Rozynkowa Antoni Horst 《Human genetics》1970,10(4):340-343
Summary A new, favism-inducing variant of glucose-6-phosphate dehydrogenase in erythrocytes is described in a Polish family. The enzyme activity has been 0–4% of normal. The enzyme displayed normal heat stability, electrophoretic mobility 105–110% of normal, Km for NADP: 16–22 M, Km for G-6-P: 26 M, and the utilization of 2-deoxy-G-6-P: 2–3%. 相似文献
13.
14.
Thessaly variant of glucose-6-phosphate dehydrogenase 总被引:1,自引:0,他引:1
15.
S B Alekseev V B Mamaev L G Stepanova L I Kalinina A N Avakova 《Biokhimii?a (Moscow, Russia)》1979,44(5):940-946
A new procedure for purification of glucose-6-phosphate dehydrogenase resulting in an electrophoretically homogenous preparation made up of 5.10(8) cells (390 mg of protein) is proposed. The enzyme yield is more than 20%. The molecular weights of a subunit and a native enzyme are 55000 and 220000, respectively. The isoelectric point for the protein lies at 4,8. The kinetics of the enzyme thermal inactivation obey the first order equation with the inactivation rate constant of 6.10(-3) min-1. 相似文献
16.
C J Van Noorden 《Progress in histochemistry and cytochemistry》1984,15(4):1-85
Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase has found many applications in biomedical research. However, up to several years ago, the methods used often appeared to be unreliable because many artefacts occurred during processing and staining of tissue sections or cells. The development of histochemical methods preventing loss or redistribution of the enzyme by using either polyvinyl alcohol as a stabilizer or a semipermeable membrane interposed between tissue section and incubation medium, has lead to progress in the topochemical localization of glucose-6-phosphate dehydrogenase. Optimization of incubation conditions has further increased the precision of histochemical methods. Precise cytochemical methods have been developed either by the use of a polyacrylamide carrier in which individual cells have been incorporated before staining or by including polyvinyl alcohol in the incubation medium. In the present text, these methods for the histochemical and cytochemical localization of glucose-6-phosphate dehydrogenase for light microscopical and electron microscopical purposes are extensively discussed along with immunocytochemical techniques. Moreover, the validity of the staining methods is considered both for the localization of glucose-6-phosphate dehydrogenase activity in cells and tissues and for cytophotometric analysis. Finally, many applications of the methods are reviewed in the fields of functional heterogeneity of tissues, early diagnosis of carcinoma, effects of xenobiotics on cellular metabolism, diagnosis of inherited glucose-6-phosphate dehydrogenase deficiency, analysis of steroid-production in reproductive organs, and quality control of oocytes of mammals. It is concluded that the use of histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase is of highly significant value in the study of diseased tissues. In many cases, the first pathological change is an increase in glucose-6-phosphate dehydrogenase activity and detection of these early changes in a few cells by histochemical means only, enables prediction of other subsequent abnormal metabolic events. Analysis of glucose-6-phosphate dehydrogenase deficiency in erythrocytes has been improved as well by the development of cytochemical tools. Heterozygous deficiency can now be detected in a reliable way. Cell biological studies of development or maturation of various tissues or cells have profited from the use of histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase activity.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
17.
Hemolysis in glucose-6-phosphate dehydrogenase deficiency 总被引:1,自引:0,他引:1
A G Motulsky 《Federation proceedings》1972,31(4):1286-1292
18.
19.
Electrophoretic polymorphisms of glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) were examined in captive colonies of five subspecies of baboons (Papio hamadryas). Phenotype frequencies and family data verified the X-linked inheritance of the G6PD polymorphism. Insufficient family data were available to confirm autosomal inheritance of the 6PGD polymorphism, but the electrophoretic patterns of variant types (putative heterozygotes) suggested the codominant expression of alleles at an autosomal locus. Implications of the G6PD polymorphism are discussed with regard to its utility as a marker system for research on X-chromosome inactivation during baboon development and for studies of clonal cell proliferation and/or cell selection during the development of atherosclerotic lesions in the baboon model. 相似文献