首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ambient light and the circadian clock have been shown to be capable of acting either independently or in an interrelated fashion to regulate the expression of conidiation in the ascomycete fungusNeurospora crassa. Recently several molecular correlates of the circadian clock have been identified in the form of the morning-specific clock-controlled genesccg-1 andccg-2. In this paper we report studies on the regulation ofccg-1, an abundantly expressed gene displaying complex regulation. Consistent with an emerging consensus for clock-controlled genes and conidiation genes inNeurospora, we report thatccg-1 expression is induced by light, and show that this induction is independent of the direct effects of light on the circadian clock. Although circadian regulation of the gene is lost in strains lacking a functional clock, expression ofccg-1 is still not constitutive, but rather fluctuates in concert with changes in developmental potential seen in such strains. Light induction ofccg-1 requires the products of theNeurospora wc-1 andwc-2 genes, but surprisingly the requirement forwc-2 is suppressed in conditional mutants ofcot-1, a gene that encodes a cAMP-dependent protein kinase. These data provide insight into a complex regulatory web, involving at least circadian clock control, light control, metabolic control, and very probably developmental regulation, that governs the expression ofccg-1.  相似文献   

2.
3.
The effects of 24 hr light-dark cycles on the circadian conidiation rhythm inNeurospora crassa were compared among will-typefrq + and clock mutantsfrq +,frq 3,frq 7,frq 9 andfrq 11. The minimum length of the light period necessary for complete entrainment to the light-dark cycles was almost 2 hr infrq +,frq 3 andfrq 7 strains. The minimum duration of the dark period necessary for the appearance of circadian conidiation was almost 4 hr in all of the strains except thefrq 11 strain. The phase of the conidiation rhythm was dependent on the light to dark transition in thefrq 1 strain in all light-dark cycles examined and in thefrq + andfrq 3 strains when the light period was shorter than 16 hr. In contrast, the phase of thefrq 7 strain was dependent on the light to dark transition when the light period was shorter than 10 hr.  相似文献   

4.
5.
Light and temperature are major environmental cues that influence circadian clocks. The molecular effects of these zeitgebers on the circadian clock of Neurospora crassa have been studied intensively during the last decade. While signal transduction of light into the circadian clock is quite well characterized, we have only recently begun to understand the molecular mechanisms that underlie temperature sensing. Here we summarize briefly the current knowledge about the effects of temperature on the circadian clock of Neurospora crassa.  相似文献   

6.
Light and temperature are major environmental cues that influence circadian clocks. The molecular effects of these zeitgebers on the circadian clock of Neurospora crassa have been studied intensively during the last decade. While signal transduction of light into the circadian clock is quite well characterized, we have only recently begun to understand the molecular mechanisms that underlie temperature sensing. Here we summarize briefly the current knowledge about the effects of temperature on the circadian clock of Neurospora crassa.  相似文献   

7.
Light and temperature are major environmental cues that influence circadian clocks. The molecular effects of these zeitgebers on the circadian clock of Neurospora crassa have been studied intensively during the last decade. While signal transduction of light into the circadian clock is quite well characterized, we have only recently begun to understand the molecular mechanisms that underlie temperature sensing. Here we summarize briefly the current knowledge about the effects of temperature on the circadian clock of Neurospora crassa.  相似文献   

8.
9.
Kim TS  Logsdon BA  Park S  Mezey JG  Lee K 《Genetics》2007,177(4):2335-2347
Neurospora crassa has been a model organism for the study of circadian clocks for the past four decades. Among natural accessions of Neurospora crassa, there is significant variation in clock phenotypes. In an attempt to investigate natural allelic variants contributing to quantitative variation, we used a quantitative trait loci mapping approach to analyze three independent mapping populations whose progenitors were collected from geographically isolated locations. Two circadian clock phenotypes, free-running period and entrained phase, were evaluated in the 188 F(1) progeny of each mapping population. To identify the clock QTL, we applied two QTL mapping analyses: composite interval mapping (CIM) and Bayesian multiple QTL analysis (BMQ). When controlling false positive rates < or =0.05, BMQ appears to be the more sensitive of the two approaches. BMQ confirmed most of the QTL from CIM (18 QTL) and identified 23 additional QTL. While 13 QTL colocalize with previously identified clock genes, we identified 30 QTL that were not linked with any previously characterized clock genes. These are candidate regions where clock genes may be located and are expected to lead to new insights in clock regulation.  相似文献   

10.
Eukaryotic circadian clocks are based on self-sustaining, cell-autonomous oscillatory feedback loops that can synchronize with the environment via recurrent stimuli (zeitgebers) such as light. The components of biological clocks and their network interactions are becoming increasingly known, calling for a quantitative understanding of their role for clock function. However, the development of data-driven mathematical clock models has remained limited by the lack of sufficiently accurate data. Here we present a comprehensive model of the circadian clock of Neurospora crassa that describe free-running oscillations in constant darkness and entrainment in light-dark cycles. To parameterize the model, we measured high-resolution time courses of luciferase reporters of morning and evening specific clock genes in WT and a mutant strain. Fitting the model to such comprehensive data allowed estimating parameters governing circadian phase, period length and amplitude, and the response of genes to light cues. Our model suggests that functional maturation of the core clock protein Frequency causes a delay in negative feedback that is critical for generating circadian rhythms.  相似文献   

11.
W. -E. Mayer 《Planta》1981,152(4):292-301
The energy requirements of the various phases of the circadian clock in the laminar pulvini cells of primary leaves of Phaseolus coccineus L. were investigated using 4-h pulses of NaCN (5 mM) and NaN3 (1 mM). The induced phase shifts were calculated from the timing of the subjective night position during the third cycle after the treatment. Both inhibitors produce advances during phases which are correlated with the upward movement of the leaf (ca. 0–12 h after the maximum of the subjective night position) and during phases which are correlated with the downward movement of the leaf (ca. 20–28 h after the maximum of the subjective night position). Maximal advances are induced during the phase which is correlated with the maximum of the subjective night position (hour 0), whereas during phases which are correlated with the subjective day position (ca. 12–20 h after the maximum of the subjective night position) the inhibitors have no effect or induce only small advances. These results demonstrate that the part of the circadian cycle which, according to Bünning's tension-relaxation model of the circadian clock, is characterized by features of relaxation, represents a sequence of phases with decreasing energy requirement, whereas the tension part of the circadian cycle represents a sequence of phases with increasing energy requirement. The energy requirement for changing and maintaining the leaf positions was investigated by continuously offering NaCN, NaN3, and dinitrophenol (DNP) to leaves with intact and half (flexor cut away) pulvini. The substances inhibit in both pulvini the upward movement or induce a downward movement, depending on the leaf position, when the transfer to the inhibitor solution takes place. These results give evidence that the movement of intact pulvini reflects the turgor (volume) state of the extensor cells and that the increase of turgor (volume) and high turgor (volume) state requires more energy than the decrease of turgor (volume) or low turgor (small volume) state. Therefore, the time course of the energy requirements of the circadian clock and the clock-controlled turgor (volume states or leaf movement) is out of phase during a circadian cycle. Consequently the reaction of the clock-controlled leaf movement to the reduced energy supply can mask the clock behavior in pulse and step experiments. The phase response curves towards CN- and N 3 - reflect the time course of the CN--induced membrane depolarizations (the energy requirement of the electrogenic pump) in extensor cells of the pulvinus (Freudling et al. (1980), Plant Physiol. 65, 966–968), and both are out of phase with the time course of the energy requirement of the turgor. Consequently it is hypothesized that in Phaseolus advances are due to membrane depolarization and that at least in this organism electric properties of the plasmalemma are essentially involved in the mechanism of the circadian clock.Abbreviations LD light-dark cycle - LL continuous light - DNP dinitrophenol This paper is dedicated to Professor Erwin Bünning on the occasion of his 75th birthdayIn this paper zero corresponds to the second maximum of the subjective night position of the leaves after transfer to constant conditions. Zero to twelve hours corresponds approximately to the upward movement of the leaves, 12–20 h to the elevated (subjective day) position, and 20–28 h to the downward movement of the leaves. In other circadian systems Pittendrigh's CT (circadian time) convention is used. CT 00 is the time of dawn after a 12-h light/12-h dark cycle. Since in Phaseolus the plants are raised in a LD cycle different from 12:12 and since the phases at dawn differ considerably from leaf to leaf and are furthermore not precisely determinable (whereas the subjective night position of the leaves is a well-defined and recognizable phase) this convention is not followed in Phaseolus. Phase zero in Phaseolus corresponds to approximately CT 18 in other systems  相似文献   

12.
A striking and defining feature of circadian clocks is the small variation in period over a physiological range of temperatures. This is referred to as temperature compensation, although recent work has suggested that the variation observed is a specific, adaptive control of period. Moreover, given that many biological rate constants have a Q10 of around 2, it is remarkable that such clocks remain rhythmic under significant temperature changes. We introduce a new mathematical model for the Neurospora crassa circadian network incorporating experimental work showing that temperature alters the balance of translation between a short and long form of the FREQUENCY (FRQ) protein. This is used to discuss period control and functionality for the Neurospora system. The model reproduces a broad range of key experimental data on temperature dependence and rhythmicity, both in wild‐type and mutant strains. We present a simple mechanism utilising the presence of the FRQ isoforms (isoform switching) by which period control could have evolved, and argue that this regulatory structure may also increase the temperature range where the clock is robustly rhythmic.  相似文献   

13.
Circadian rhythms are endogenous and self-sustained oscillations of multiple biological processes with approximately 24-h rhythmicity. Circadian genes and their protein products constitute the molecular components of the circadian oscillator that form positive/negative feedback loops and generate circadian rhythms. The circadian regulation extends from core clock genes to various clock-controlled genes that include various cell cycle genes. Aberrant expression of circadian clock genes, therefore, may lead to genomic instability and accelerated cellular proliferation potentially promoting carcinogenesis. The current study encompasses the investigation of simultaneous expression of four circadian clock genes (Bmal1, Clock, Per1 and Per2) and three clock-controlled cell cycle genes (Myc, Cyclin D1 and Wee1) at mRNA level and determination of serum melatonin levels in peripheral blood samples of 37 CLL (chronic lymphocytic leukemia) patients and equal number of age- and sex-matched healthy controls in order to indicate association between deregulated circadian clock and manifestation of CLL. Results showed significantly down-regulated expression of Bmal1, Per1, Per2 and Wee1 and significantly up-regulated expression of Myc and Cyclin D1 (P < 0.0001) in CLL patients as compared to healthy controls. When expression of these genes was compared between shift-workers and non-shift-workers within the CLL group, the expression was found more aberrant in shift-workers as compared to non-shift-workers. However, this difference was found statistically significant for Myc and Cyclin D1 only (P < 0.05). Serum melatonin levels were found significantly low (P < 0.0001) in CLL subjects as compared to healthy controls whereas melatonin levels were found still lower in shift-workers as compared to non-shift-workers within CLL group (P < 0.01). Our results suggest that aberrant expression of circadian clock genes can lead to aberrant expression of their downstream targets that are involved in cell proliferation and apoptosis and hence may result in manifestation of CLL. Moreover, shift-work and low melatonin levels may also contribute in etiology of CLL by further perturbing of circadian clock.  相似文献   

14.
15.
The influence of environmental (extracellular) pH on the sporulation rhythm in Neurospora crassa was investigated for wild-type (frq+) and the mutants chr, frq1, frq7, and frq8. In all mutants, including wild type, the growth rate was found to be influenced strongly by extracellular pH in the range 4-9. On the other hand, for the same pH range, the period length of the sporulation rhythm is little influenced in wild type, chr, and frq1. A loss of pH homeostasis of the period, however, was observed in the mutants frq7 and frq8, which also are known to have lost temperature compensation. Concerning the influence of extracellular pH on growth rates, a clear correspondence between growth rates and the concentration of available H2PO4- ion has been found, indicating that the uptake of H2PO4- may be a limiting factor for growth under our experimental conditions. The loss of pH compensation in the frq7 and frq8 mutants may be related to less easily degradable FRQ7,8 proteins when compared with wild-type FRQ. Results from recent model considerations and experimental results predict that, with increasing extra-and intracellular pH, the FRQ7 protein degradation increases and should lead to shorter period lengths. (Chronobiology International, 17(6), 733-750, 2000)  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号