首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Swiatek P 《Folia biologica》2001,49(3-4):215-224
In developing ovarioles of Anthonomus pomorum (Coleoptera, Polyphaga, Curculionidae) the trophic chambers (tropharia) are relatively large and consist of clusters (clones) of germ cells and various somatic tissues. Each ovariole is enclosed within an outer epithelial sheath (tunica externa). Throughout the pupal phase, the growth of this sheath is accelerated and precedes the development of the rest of the ovariole. As a result, the epithelial sheath proliferates anteriorly and forms an elongated "sleeve" that during the later stages of development becomes gradually filled by the growing tropharium. In the early pupal stage, a few terminal filament cells are observed in contact with the anterior end of the tropharium. These cells are separated from the rest of the trophic chamber by a transverse septum, which maintains continuity with the basal lamina. Beneath the basal lamina there is a layer of inner sheath cells, whereas inside the tropharium there are interstitial cells. These two types of cell differ morphologically in a mature ovary but they retain, until the end of the imago-B stage, a similar ultrastructure testifying to their common origin. At the posterior end of the tropharium, from the imago-B stage on, many young oocytes, surrounded by prefollicular cells, are observed. This is the so-called neck region of the tropharium. Extraction with Triton X-100 detergent showed that in a mature trophic chamber there are only individual microtubules arranged along the projections of interstitial cells. This indicates that the cytoskeleton elements (microfilaments and microtubules) participate only to a very limited extent in the spatial organisation of the tropharium in A. pomorum.  相似文献   

2.
Bug ovaries are of the telotrophic meroistic type. Nurse cells are restricted to the anterior tropharium and are in syncytial connection with the oocytes via the acellular trophic core region into which cytoplasmic projections of oocytes and nurse cells open. The origin of intercellular connections in bug ovaries is not well understood. In order to elucidate the cellular processes underlying the emergence of the syncytium, we analysed the development of the ovary of Dysdercus intermedius throughout the five larval instars. Up to the third instar, the germ cell population of an ovariole anlage forms a single, tight rosette. In the center of the rosette, phosphotyrosine containing proteins and f-actin accumulate. This center is filled with fusomal cytoplasm and closely interdigitating cell membranes known as the membrane labyrinth. With the molt to the fourth instar germ cells enhance their mitotic activity considerably. As a rule, germ cells divide asynchronously. Simultaneously, the membrane labyrinth expands and establishes a central column within the growing tropharium. In the fifth instar the membrane labyrinth retracts to an apical position, where it is maintained even in ovarioles of adult females. The former membrane labyrinth in middle and posterior regions of the tropharium is replaced by the central core to which nurse cells and oocytes are syncytially connected. Germ cells in the most anterior part of the tropharium, i.e. those in close proximity to the membrane labyrinth remain proliferative. The posterior-most germ cells enter meiosis and become oocytes. The majority of the ovarioles' germ cells, located in between these two populations, endopolyploidize and function as nurse cells. We conclude that the extensive multiplication of germ cells and their syncytial assembly during larval development is achieved by incomplete cytokineses followed by massive membrane production. Membranes are degraded as soon as the trophic core develops. For comparative reasons, we also undertook a cursory examination of early germ cell development in Dysdercus intermedius males. All results were compatible with the known basic patterns of early insect spermatogenesis. Germ cells run through mitotic and meiotic divisions in synchronous clusters emerging from incomplete cytokineses. During the division phase, the germ cells of an individual cluster are connected by a polyfusome rich in f-actin.  相似文献   

3.
The establishment and reorganization of intercellular bridges during larval-adult ovarian differentiation is the basis of the syncytial nature of the adult hemipteran telotrophic ovary. The formation, in the late differentiation phase, of groups of closely arranged nurse cell nuclei occupying a common cytoplasm results from membrane fusions. Oocyte-oocyte intercellular bridge systems later are modified to form the trophic cords. The trophic core, which undergoes a restructuring during the late differentiation phase, mediates nurse cell-oocyte interactions in this system. Material, transported to and accumulated by late differentiation phase pre-vitellogenic oocytes, originates from trophic core restructuring and zone III nurse cell production.  相似文献   

4.
Sialis flavilatera L. (Sialidae, Megaloptera) has telotrophic-meroistic ovarioles. The germ cells of the tropharium are organized into two distinct tissues, the central syncytium and the germ cell tapetum. The central syncytium consists of nurse cell nuclei embedded in a common cytoplasm which is rich in ribosomes and mitochondria. Cell membranes are totally absent. The germ cell tapetum surrounds the syncytium and consists of a monolayer of cells, each of which is connected with the central syncytium by an intercellular bridge. The oocytes differentiate from basal tapetum cells by previtellogenic growth. Their nutritive cords remain connected to the central syncytium by the intercellular bridge. Ovariole development starts soon after hatching with the immigration of germ cells into the ovariole-anlagen and is finished during pupal stages 23 months later. In apical regions of each tropharium, mitoses occur throughout larval life. The descendants enter the prophase of meiosis which lasts until pre-vitellogenesis; thus, a differential gradient of position and time is established. About 12 months after hatching, the central syncytium arises at the base of the tropharium from a membrane labyrinth in which intercellular bridges are entangled. Evidence is presented that endopolyploidization does not occur during germ cell differentiation. Finally, the results are compared with those found in Hemiptera and polyphage Coleoptera. The great diversities are interpreted as an indication for a polyphyletic origin of the telotrophic ovary.  相似文献   

5.
Summary In the telotrophic ovariole of Dysdercus intermedius the intercellular transport consists of different subsystems. Microinjection of FITC-labeled slowly diffusing proteins with opposite electrical net charges and of mitochondria was used to study the translocation of macromolecules and organelles. a) By intracellular measurements a voltage gradient of about 4 mV between the tropharium as the more negative side and the previtellogenic oocytes could be demonstrated. b) After injection into the tropharium negatively charged proteins migrated according to the electropotential gradient via the trophic cords into the oocytes. Positively charged proteins, however, were retained in the tropharium. c) After injection into previtellogenic oocytes both negatively and positively charged proteins moved into the trophic cords. Thus, the effectiveness of the electropotential gradient on the distribution of charged proteins is more pronounced from the tropharium side. d) Mitochondria microinjected into the trophic core were probably aligned along microtubules and translocated towards the trophic cords. — These results suggest that in the telotrophic bug ovariole a number of intercellular transport subsystems contribute to provide previtellogenic oocytes with nurse cells products. An electrophoretic transport mechanism for soluble proteins acting especially within the tropharium and a microtubule-associated transport for mitochondria could be evidenced.  相似文献   

6.
The ovaries of aphids belonging to the families Eriosomatidae, Anoeciidae, Drepanosiphidae, Thelaxidae, Aphididae, and Lachnidae were examined at the ultrastructural level. The ovaries of these aphids are composed of several telotrophic ovarioles. The individual ovariole is differentiated into a terminal filament, tropharium, vitellarium, and pedicel (ovariolar stalk). Terminal filaments of all ovarioles join together into the suspensory ligament, which attaches the ovary to the lobe of the fat body. The tropharium houses individual trophocytes and early previtellogenic oocytes termed arrested oocytes. Trophocytes are connected with the central part of the tropharium, the trophic core, by means of broad cytoplasmic processes. One or more oocytes develop in the vitellarium. Oocytes are surrounded by a single layer of follicular cells, which do not diversify into distinct subpopulations. The general organization of the ovaries in oviparous females is similar to that of the ovaries in viviparous females, but there are significant differences in their functioning: (1) in viviparous females, all ovarioles develop, whereas in oviparous females, some of them degenerate; (2) the number of germ cells per ovariole is usually greater in females of the oviparous generation than in females of viviparous generations; (3) in oviparous females, oocytes in the vitellarium develop through three stages (previtellogenesis, vitellogenesis, and choriogenesis), whereas in viviparous females, the development of oocytes stops after previtellogenesis; and (4) in the oocyte cytoplasm of oviparous females, lipid droplets and yolk granules accumulate, whereas in viviparous females, oocytes accrue only lipid droplets. Our results indicate that a large number of germ cells per ovariole represent the ancestral state within aphids. This trait may be helpful in inferring the phylogeny of Aphidoidea.  相似文献   

7.
The ovaries of the investigated homopterans are telotrophicmeroistic and consist of several (7-21 ) ovarioles. Each ovariole is composed of three elements: an anteriorly localized terminal filament, a tropharium, and a posterior vitellarium. The latter comprises several developing ovarian follicles in a linear arrangement. The terminal filaments are relatively solid and composed of two distinct types of cells: the apical cells (ApCs) and the basal cells (BaCs). The BaCs are disc-shaped and oriented perpendicularly to the long axis of the ovariole, whereas the ApCs are strongly elongated and arranged parallel to this axis. The distribution of cytoskeletal elements has been studied with the use of electron microscope and histochemical methods. We show that the ApCs house prominent bundles of highly ordered microfilaments and/or parallel arranged microtubules. In contrast, BaCs contain only individual microtubules that are predominantly located in peripheral regions of the cells. It is suggested that microfilaments and microtubules present in the ApCs are responsible for the mechanical rigidity of the terminal filaments.  相似文献   

8.
The tropharium of the telotrophic ovarioles of Rhodnius is syncytial with the nurse cell nuclei located in tortuous finger-like projections arborizing from a common cytoplasmic area, the trophic core. The nurse cell nuclei exhibit prominent nucleoli. Located adjacent to the nuclear envelope are masses of granular material both within the nucleus and adjoining cytoplasm. The cytoplasm consists primarily of ribosomes and mitochondria. The trophic core and the trophic cords that connect the core to individual oocytes characteristically possess parallel arrays of microtubules with ribosomes and mitochondria interspersed between. Surrounding the nurse tissue (germarium) is a thin layer of squamous cells comprising the inner sheath. The inner sheath is encompassed by the non-cellular tunica propria superficial to which are two external cellular sheaths. The syncytial nature of the tropharium appears to arise as a result of the fusion of many entangled nurse cell-oocyte complexes during the late fifth instar. The structural similarities, and possible homologies with the polytrophic type of ovariole is discussed.  相似文献   

9.
Summary In telotrophic insect ovaries, the oocytes develop in association with two kinds of supporting cells. Each ovary contains five to seven ovarioles. An ovariole consists of a single strand of several oocytes. At the apex of each ovariole is a syncytium of nurse cells (the tropharium), which connects by strands of cytoplasm (the trophic cords) to four or more previtellogenic oocytes. In addition, each oocyte is surrounded by an epithelium of follicle cells, with which it may form gap junctions. To study the temporal and spatial patterns of these associations, Lucifer yellow was microinjected into ovaries of the red cotton bug, Dysdercus intermedius. Freeze-fracture replicas were examined to analyze the distribution of gap junctions between the oocyte and the follicle cells. Dye-coupling between oocytes and follicle cells was detectable early in previtellogenesis and was maintained through late vitellogenesis. It was restricted to the lateral follicle cells. The anterior and posterior follicle cells were not dye-coupled. Freeze-fracture analysis showed microvilli formed by the oocyte during mid-previtellogenesis, and the gap junctions became located at the tips of these. As the microvilli continued to elongate until late vitellogenesis, gap junction particles between them and follicle cell membranes became arranged in long arrays. The morphological findings raise questions about pathways for the intrafollicular phase of the ion currents known to surround the previtellogenic and vitellogenic growth zones of the ovariole.Supported by the Deutsche Forschungsgemeinschaft (Schwerpunkt Differenzierung)  相似文献   

10.
Summary Oogenesis is known to be important for embryonic pattern formation. For this reason we have studied the early differentiation of the honeybee ovariole histologically, ultrastructurally, and by staining F-actin with rhodaminyl-phalloidin. At the anterior tip of the ovariole, stem cells are lined up in a single file; they are organelle-poor but contain characteristic electrondense bodies with lysosomal properties. The presence of these bodies in cystocytes as well as prefollicle cells indicates that both cell types may be derived from the apical stem cells. During later stages of oogenesis, the follicle cells differentiate cytologically in different regions of the follicle. The organization of the intercellular bridges between cystocytes derived from a single cystoblast has been studied in detail. The polyfusomes in the intercellular bridges of cystocyte clusters stain with rhodaminyl-phalloidin and hence contain F-actin. Later, when the polyfusomes begin to desintegrate, F-actin rings form which line the rims of the intercellular bridges. Actin might be recruited from conspicuous F-actin stores which were detected in the germ-line cells. The F-actin rings are dissembled some time before the onset of vitellogenesis when the nurse chamber has grown to a length of about 200 m. At the basal side of the follicle cells (close to the basement membrane facing the haemocdele) parallel microfilament bundles encircle the ovariole. The microfilament bundles which are oriented mostly perpendicular to the long axis of the ovariole were first observed around the zone where the cystocyte divisions occur; after this phase the micro-filament bundles become organized differently in the follicle cells associated with the nurse cells and in the follicular epithelium of the oocyte. Correspondence to: H.O. Gutzeit  相似文献   

11.
12.
Tribolium castaneum has telotrophic meroistic ovarioles of the Polyphaga type. During larval stages, germ cells multiply in a first mitotic cycle forming many small, irregularly branched germ-cell clusters which colonize between the anterior and posterior somatic tissues in each ovariole. Because germ-cell multiplication is accompanied by cluster splitting, we assume a very low number of germ cells per ovariole at the beginning of ovariole development. In the late larval and early pupal stages, we found programmed cell death of germ-cell clusters that are located in anterior and middle regions of the ovarioles. Only those clusters survive that rest on posterior somatic tissue. The germ cells that are in direct contact with posterior somatic cells transform into morphologically distinct pro-oocytes. Intercellular bridges interconnecting pro-oocytes are located posteriorly and are filled with fusomes that regularly fuse to form polyfusomes. Intercellular bridges connecting pro-oocytes to pro-nurse cells are always positioned anteriorly and contain small fusomal plugs. During pupal stages, a second wave of metasynchronous mitoses is initiated by the pro-oocytes, leading to linear subclusters with few bifurcations. We assume that the pro-oocytes together with posterior somatic cells build the center of determination and differentiation of germ cells throughout the larval, pupal, and adult stages. The early developmental pattern of germ-cell multiplication is highly similar to the events known from the telotrophic ovary of the Sialis type. We conclude that among the common ancestors of Neuropterida and Coleoptera, a telotrophic meroistic ovary of the Sialis type evolved, which still exists in Sialidae, Raphidioptera, and a myxophagan Coleoptera family, the Hydroscaphidae. Consequently, the telotrophic ovary of the Polyphaga type evolved from the Sialis type. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

13.
Nuclei in the proliferative pseudostratified epithelia of vastly different organisms exhibit a characteristic dynamics - the so-called interkinetic nuclear migration (IKNM). Although these movements are thought to be intimately tied to the cell cycle, little is known about the relationship between IKNM and distinct phases of the cell cycle and the role that this association plays in ensuring balanced proliferation and subsequent differentiation. Here, we perform a quantitative analysis of modes of nuclear migration during the cell cycle using a marker that enables the first unequivocal differentiation of all four phases in proliferating neuroepithelial cells in vivo. In zebrafish neuroepithelia, nuclei spend the majority of the cell cycle in S phase, less time in G1, with G2 and M being noticeably shorter still in comparison. Correlating cell cycle phases with nuclear movements shows that IKNM comprises rapid apical nuclear migration during G2 phase and stochastic nuclear motion during G1 and S phases. The rapid apical migration coincides with the onset of G2, during which we find basal actomyosin accumulation. Inhibiting the transition from G2 to M phase induces a complete stalling of nuclei, indicating that IKNM and cell cycle continuation cannot be uncoupled and that progression from G2 to M is a prerequisite for rapid apical migration. Taken together, these results suggest that IKNM involves an actomyosin-driven contraction of cytoplasm basal to the nucleus during G2, and that the stochastic nuclear movements observed in other phases arise passively due to apical migration in neighboring cells.  相似文献   

14.
The ultra- and microstructure of the female reproductive system of Matsucoccus matsumurae was studied using light microscopy, scanning and transmission electron microscopy. The results revealed that the female reproductive system of M. matsumurae is composed of a pair of ovaries, a common oviduct, a pair of lateral oviducts, a spermatheca and two pairs of accessory glands. Each ovary is composed of approximately 50 telotrophic ovarioles that are devoid of terminal filaments. Each ovariole is subdivided into an apical tropharium, a vitellarium and a short pedicel connected to a lateral oviduct. The tropharium contains 8–10 trophocytes and two early previtellogenic oocytes termed arrested oocytes. The trophocytes degenerate after egg maturation, and the arrested oocytes are capable of further development. The vitellarium contains 3–6 oocytes of different developmental stages: previtellogenesis, vitellogenesis and choriogenesis. The surface of the vitellarium is rough and composed of a pattern of polygonal reticular formations with a center protuberance. The oocyte possesses numerous yolk spheres and lipid droplets, and is surrounded by a mono-layered follicular epithelium that becomes binucleate at the beginning of vitellogenesis. Accessory nuclei are observed in the peripheral ooplasm during vitellogenesis.  相似文献   

15.
Szklarzewicz, T., Kalandyk‐Kolodziejczyk, M., Kot, M. and Michalik, A. 2011. Ovary structure and transovarial transmission of endosymbiotic microorganisms in Marchalina hellenica (Insecta, Hemiptera, Coccomorpha: Marchalinidae). —Acta Zoologica (Stockholm) 00 :1–9. The paired ovaries of Marchalina hellenica are composed of about 200 ovarioles of telotrophic type. In each ovariole, a trophic chamber, vitellarium and ovariolar stalk can be distinguished. The tropharia comprise trophocytes and early previtellogenic oocytes (termed arrested oocytes) or trophocytes only. The arrested oocytes are not capable of further development. In the vitellaria, single oocytes develop that are connected to the tropharium by means of broad nutritive cords. The number of germ cells (trophocytes and oocytes) constituting ovarioles is not constant and may range between 25 and 32. Numerous endosymbiotic bacteria occur in the cytoplasm of trophocytes. The endosymbionts are transported via nutritive cords to the developing oocyte. The obtained results are discussed in a phylogenetic context.  相似文献   

16.
The organization of the symbiotic system (i.e., distribution and ultrastructure of symbionts) and the mode of inheritance of symbionts in two species, Nysius ericae and Nithecus jacobaeae belonging to Heteroptera: Lygaeidae, are described. Like most hemipterans, Nysius ericae and Nithecus jacobaeae harbor obligate prokaryotic symbionts. The symbiotic bacteria are harbored in large, specialized cells termed bacteriocytes which are localized in the close vicinity of the ovaries as well as inside the ovaries. The ovaries are composed of seven ovarioles of the telotrophic type. Bacteriocytes occur in each ovariole in the basal part of tropharium termed the infection zone. The bacteriocytes form a ring surrounding the early previtellogenic oocytes. The cytoplasm of the bacteriocytes is tightly packed with large elongated bacteria. In the bacteriocytes of Nysius ericae, small, rod-shaped bacteria also occur. Both types of bacteria are transovarially transmitted from one generation to the next.  相似文献   

17.
The concentrations of tissue plasminogen activator (t-PA), urokinase plasminogen activator (u-PA) and plasminogen activator inhibitor (PAI-1) have been determined in endometrial curettings obtained from 46 subfertile women during proliferative, early or late secretory phases of the menstrual cycle. t-PA activity and antigen concentrations was significantly higher (P < 0.001) in late secretory endometrium than in proliferative or early secretory endometrium. Higher concentrations of PAI-1 antigen (P < 0.05) were also noted in late secretory phase than in proliferative and early secretory endometrium. However, u-PA concentration was not significantly different and no PAI activity could be demonstrated in the menstrual phases studied. Zymography studies confirmed the presence of both t-PA and u-PA in the endometrium. Ovarian hormonal patterns may therefore influence the activity of plasminogen activators especially of t-PA in the endometrium during various phases of the menstrual cycle.  相似文献   

18.
In a psychodid, Tinearia alternata, the initial differentiation of the polytrophic ovary occurs during the early larval stages. Early in development, each ovary anlage is a solid organ subdivided into three distinct zones: the cortex houses germ cells and somatic interstitial tissue, while two other somatic regions will give rise to the oviduct calyx and anterior part of the lateral oviduct. Germ cell cluster formation precedes the development of ovarioles. Each ovariole houses only one functional egg chamber. All ovarioles within paired ovaries are developmentally synchronized. In the larval ovaries, the newly formed egg chambers and then the ovarioles are intermingeled with and surrounded by the somatic interstitial tissue of the ovary cortex. The interstitial cells give rise to all the somatic elements of the ovarioles. In the pupal ovaries, the remaining interstitial tissue degenerates; thus, the ovarioles protrude into the body cavity. The ovaries in psychodids develop relatively large and swollen oviduct calyxes that are equivalent to receptaculum seminis (spermatheca). The morphological differentiation of germ cells within the egg chambers starts during late larval/early pupal stages. Nurse cell nuclei contain prominent nucleoli and polytene chromosomes. Oocyte growth results from accumulation of yolk and then, in the final stages of oogenesis, from an inflow of cytoplasm from the nurse cells. J. Morphol. 236:167–177, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
The specialized cell types and two distinct regions of the adult Rhodnius prolixus cement gland develop from a simple pseudostratified epithelial tube during the 20–22 days of the fifth stadium. Feeding initiates the first phase, proliferation. Cells round up and divide tangentially to the lumen. Following the proliferation phase, differentiative mitoses occur and differentiation, resulting in secretory units (consisting of a ductule, gland cell and cuticular lining), ensues in the distal region. Ductule morphogenesis occurs without pseudocilia, thus differing from other insect glands. The complex changes in cell shape and interaction occur during development of the secretory unit. The secretory cell and end-apparatus develop from a double cell unit at the base of elongating ductules. The inner cell produces a complex end-apparatus of epicuticle that mirrors the microvillar pattern and then it degenerates. The ductules are lined by cuticulin and inner epicuticle while the central gland lumen has a layer of endocuticle as well. The epithelium of the proximal region remains simple producing the thick corrugated cuticle characteristic of the adult secretory duct. The mesodermal covering forms a thick longitudinal striated muscle layer that adheres to the epithelium via desmosomes.  相似文献   

20.
The period of gonads development was first studied from one to five years in the freshwater pearl mussel Hyriopisis schlegelii. It lasted for 36 months and was divided into three main stages: initiation of gonad formation, a stable growth phase, and a reproductive cell development phase. Each reproductive cycle consisted of five stages: proliferative stage (from late January to late February), growth stage (from late February to late March), maturation stage, spawning stage (from early April to late October) and recovery stage (from early November to late January). Interestingly, a hermaphroditic phenomenon was observed in this mussel for the first time, which appears during the development stage from 26 to 32 months. Male and female follicular tissues coexisted in hermaphrodite individuals with the male follicular tissue accounting for more than 90% of the whole gonad tissue. No hermaphroditic phenomenon was observed in matured gonad. We thus speculate that self-fertilization does not exist in H. schlegelii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号