首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the pathogenesis of pulmonary Cryptococcus neoformans infection and passive Ab efficacy in mice deficient in inducible NO synthase (NOS2(-/-)) and the parental strain. Parental mice lived significantly longer than NOS2(-/-) mice after intratracheal infection, despite having a higher lung fungal burden. Administration of Ab reduced lung CFU in both NOS2(-/-) and parental mice, but prolonged survival and increased the inflammatory response only in parental mice. Ab administration was associated with increased serum nitrite and reduced polysaccharide levels in parental mice. Eosinophils were present in greater numbers in the lung of infected NOS2(-/-) mice than parental mice, irrespective of Ab administration. C. neoformans infection in NOS2(-/-) mice resulted in significantly higher levels of IFN-gamma, monocyte chemoattractant protein-1, and macrophage-inflammatory protein-1alpha than parental mice. Ab administration had different effects on infected NOS2(-/-) and parental mice with respect to IFN-gamma, monocoyte chemoattractant protein-1, and macrophage-inflammatory protein-1alpha levels. Ab administration increased lung levels of IFN-gamma in parental mice and reduced levels in NOS2(-/-) mice. The results indicate that NO is involved in the regulation of cytokine expression in response to cryptococcal pneumonia and is necessary for Ab efficacy against C. neoformans in mice. Our findings indicate a complex relationship between Ab efficacy against C. neoformans and cytokine expression, underscoring the interdependency of cellular and humoral defense mechanisms.  相似文献   

2.
Jain N  Fries BC 《Mycopathologia》2008,166(4):181-188
Microorganisms that live in fluctuating environments must constantly adapt their behavior to survive. The host constitutes an important microenvironment in opportunistic and primary fungal pathogens like Cryptococcus neoformans (C. neoformans) and Cryptococcus gattii (C. gattii). In clonal populations, adaptation may be achieved through the generation of diversity. For fungi phenotype switching constitutes a mechanism that allows them to change rapidly. Both C. neoformans and C. gattii undergo phenotypic switching, which allows them to be successful pathogens and cause persistent disease. Similar to other encapsulated microbes that exhibit phenotypic variation, phenotypic switching in Cryptococcus changes the polysaccharide capsule. Most importantly, in animal models phenotypic switching affects virulence and can change the outcome of infection. Virulence changes because C. neoformans and C. gattii switch variants elicit different inflammatory responses in the host. This altered host response can also affect the response to antifungal therapy and in some cases may even promote the selection of switch variants. This review highlights the similarity and differences between phenotypic switching in C. neoformans and C. gattii, the two dominant species that cause cryptococcosis in humans.  相似文献   

3.
Maintenance of immunity to persistent pathogens is poorly understood. In this study, we used a murine model of persistent pulmonary fungal infection to study the ongoing cell-mediated immune response. CBA/J mice with low-level persistent Cryptococcus neoformans infection had CD4+ T cells of effector memory phenotype present in their lungs. Although unable to eliminate the primary infection to sterility, these mice displayed hallmarks of immunologic memory in response to rechallenge with C. neoformans: 1) the secondary cryptococcal challenge was controlled much more rapidly, 2) the inflammatory response developed and resolved more rapidly, 3) CD4+ T and CD8+ T cell responses were higher in magnitude, and 4) effector cytokine production by T cells was greatly enhanced. Depletion of CD4+ T cells at the time of secondary challenge adversely affected clearance of C. neoformans from the lungs. These results demonstrate that persistent low-level infection with C. neoformans does not impair the cell-mediated response to the fungus. Although they are relatively free of overt disease, these mice can respond with a rapid secondary immune response if the burden of C. neoformans increases. These data support the concept that immunologically healthy individuals can maintain low numbers of cryptococci that can become a nidus for re-activation disease during immunodeficient states such as AIDS.  相似文献   

4.
Invasive pulmonary aspergillosis is a devastating complication of immunosuppression that usually occurs in neutropenic patients. In this setting, augmentation of the antifungal activity of available immune cells may improve the outcome of the infection. Macrophage inflammatory protein-1 alpha (MIP-1 alpha) is a CC chemokine with potent chemotactic activity for various subsets of mononuclear leukocytes. We therefore tested the hypothesis that the influx of mononuclear cells into the lung in invasive pulmonary aspergillosis is in part mediated by MIP-1 alpha, and the manipulation of this ligand alters the outcome of the infection. We found that in both immunocompetent and neutropenic mice, MIP-1 alpha was induced in the lungs in response to intratracheal administration of Aspergillus fumigatus conidia. In neutrophil-depleted mice challenged with intratracheal conidia, there was evidence of invasive fungal pneumonia associated with a predominantly mononuclear leukocyte infiltrate. Ab-mediated depletion of MIP-1 alpha resulted in a 6-fold increase in mortality in neutropenic mice, which was associated with a 12-fold increase in lung fungal burden. Studies of single-cell suspensions of whole lungs revealed a 36% decrease in total lung leukocyte infiltration as a result of MIP-1 alpha neutralization. Flow cytometry on whole lung suspensions showed a 41% reduction in lung monocyte/macrophages as a result of MIP-1 alpha neutralization, but no difference in other lung leukocyte subsets. These studies indicate that MIP-1 alpha is a critical mediator of host defense against A. fumigatus in the setting of neutropenia and may be an important target in devising future therapeutic strategies against invasive aspergillosis.  相似文献   

5.
Macrophage inflammatory protein-1alpha (MIP-1alpha/CCL3) is a CC chemokine required for optimal recruitment of leukocytes in response to cryptococcal Ags. MIP-1alpha is expressed in the lungs by day 6 post Cryptococcus neoformans infection and could play a role in the development of cell-mediated immunity. To address this possibility, wild-type (MIP-1alpha(+/+)) mice and MIP-1alpha knockout (MIP-1alpha(-/-)) mice were infected intratracheally with a highly virulent strain of C. neoformans (145A). MIP-1alpha message was detected in the lungs on days 3, 7, and 14 in MIP-1alpha(+/+) mice, but it was undetectable in MIP-1alpha(-/-) mice. On day 16, MIP-1alpha(-/-) mice had a 7-fold increase in C. neoformans burden in the lungs, but no decrease in pulmonary leukocyte recruitment. MIP-1alpha(+/+) and MIP-1alpha(-/-) mice had similar numbers of recruited lymphocytes and monocytes/macrophages. Notably, MIP-1alpha(-/-) mice had a significantly greater number of eosinophils. MIP-1alpha(-/-) mice had extremely high levels of serum IgE. This switch of immune response to a T(2) phenotype was associated with enhanced IL-4 and IL-13 expression in the lungs of MIP-1alpha(-/-) mice compared with MIP-1alpha (+/+) mice. Progression of pulmonary cryptococcosis in the presence of nonprotective T(2) immunity resulted in profound lung damage in MIP-1alpha(-/-) mice (eosinophilic crystal deposition, destruction of lung parenchyma, and pulmonary hemorrhage). Twelve-week survival was dramatically decreased in MIP-1alpha(-/-) mice. These studies, together with our previous studies, demonstrate that MIP-1alpha plays a role in both the afferent (T(1)/T(2) development) and efferent (T(1)-mediated leukocyte recruitment) phases of cell-mediated immunity to C. neoformans.  相似文献   

6.
Intestinal epithelial cells are the initial sites of host response to Clostridium difficile infection and can play a role in signaling the influx of inflammatory cells. To further explore this role, the regulated expression and polarized secretion of CXC and CC chemokines by human intestinal epithelial cells were investigated. An expression of the CXC chemokines, including IL-8 and growth-related oncogene (GRO)-alpha, and the CC chemokine monocyte chemoattractant protein (MCP)-1 from HT-29 cells increased in the 1-6 hr following C. difficile toxin A stimulation, assessed by quantitative RT-PCR. In contrast, the expression of neutrophil activating protein-78 (ENA-78) was delayed for 18 hr. The up-regulated mRNA expression of chemokines was paralleled by the increase of protein levels. However, the expression of macrophage inflammatory protein (MIP)-1alpha, RANTES (regulated on activation normal T cells expressed and secreted), and interferon-gamma-inducible protein-10 (IP-10) was not changed in HT-29 or Caco-2 cells stimulated with toxin A. Upon stimulation of the polarized Caco-2 epithelial cells in a transwell chamber with toxin A, CXC and CC chemokines were released predominantly into the basolateral compartment. Moreover, the addition of IFN-gamma and TNF-alpha to toxin A stimulated Caco-2 cells increased the basolateral release of CC chemokine MCP-1. In contrast, IFN-gamma and TNF-alpha had no effect on the expression of the CXC chemokines IL-8 and GRO-alpha. These results suggest that a CXC and CC chemokine expression from epithelial cells infected with C. difficile may be an important factor in the mucosal inflammatory response.  相似文献   

7.
8.
We examined the mechanisms involved in the development of lung lesions after infection with Cryptococcus neoformans by comparing the histopathological findings and chemokine responses in the lungs of mice infected with C. neoformans and assessed the effect of interleukin (IL) 12 which protects mice from lethal infection. In mice infected intratracheally with a highly virulent strain of C. neoformans, the yeast cells multiplied quickly in the alveolar spaces but only a poor cellular inflammatory response was observed throughout the course of infection. Very little or no production of chemokines, including MCP-1, RANTES, MIP-1alpha, MIP-1beta and IP-10, was detected at the mRNA level using RT-PCR as well as at a protein level in MCP-1, RANTES and MIP-1alpha. In contrast, intraperitoneal administration of IL-12 induced the synthesis of these chemokines and a marked cellular inflammatory response involving histiocytes and lymphocytes in infected mice. Our findings were confirmed by flow cytometry of intraparenchymal leukocytes obtained from lung homogenates which showed IL-12-induced accumulation of inflammatory cells consisting mostly of macrophages and CD4+ alphabeta T cells. On the other hand, C-X-C chemokines including MIP-2 and KC, which attract neutrophils, were produced in infected and PBS-treated mice but treatment with IL-12 showed a marginal effect on their level, and neutrophil accumulation was similar in PBS- and IL-12-treated mice infected with C. neoforman. Our results demonstrate a close correlation between chemokine levels and development of lung lesions, and suggest that the induction of chemokine synthesis may be one of the mechanisms of IL-12-induced protection against cryptococcal infection.  相似文献   

9.
Initiation of a protective immune response to infection by the pathogenic fungus Cryptococcus neoformans is mediated in part by host factors that promote interactions between immune cells and C. neoformans yeast. Surfactant protein A (SP-A) contributes positively to pulmonary host defenses against a variety of bacteria, viruses, and fungi in part by promoting the recognition and phagocytosis of these pathogens by alveolar macrophages. In the present study we investigated the role of SP-A as a mediator of host defense against the pulmonary pathogen, C. neoformans. Previous studies have shown that SP-A binds to acapsular and minimally encapsulated strains of C. neoformans. Using in vitro binding assays we confirmed that SP-A does not directly bind to a fully encapsulated strain of C. neoformans (H99). However, we observed that when C. neoformans was incubated in bronchoalveolar fluid, SP-A binding was detected, suggesting that another alveolar host factor may enable SP-A binding. Indeed, we discovered that SP-A binds encapsulated C. neoformans via a previously unknown IgG dependent mechanism. The consequence of this interaction was the inhibition of IgG-mediated phagocytosis of C. neoformans by alveolar macrophages. Therefore, to assess the contribution of SP-A to the pulmonary host defenses we compared in vivo infections using SP-A null mice (SP-A-/-) and wild-type mice in an intranasal infection model. We found that the immune response assessed by cellular counts, TNFalpha cytokine production, and fungal burden in lungs and bronchoalveolar lavage fluids during early stages of infection were equivalent. Furthermore, the survival outcome of C. neoformans infection was equivalent in SP-A-/- and wild-type mice. Our results suggest that unlike a variety of bacteria, viruses, and other fungi, progression of disease with an inhalational challenge of C. neoformans does not appear to be negatively or positively affected by SP-A mediated mechanisms of pulmonary host defense.  相似文献   

10.
Xiao  Bao-Guo  Mousa  Alyaa  Kivisäkk  Pia  Seiger  Åke 《Brain Cell Biology》1998,27(8):575-580
The cellular infiltration found during CNS inflammation consists of monocytes and activated T cells, suggesting the presence of cell-specific chemotactic signals during inflammatory responses. Astrocyte chemokine expression might contribute to site-specific leukocyte infiltration within the CNS. To investigate the factors that regulate astrocyte chemokine expression, we examined the ability of human fetal astrocytes to induce β-family chemokine mRNA. Astrocyte-derived monocyte chemoattractant protein-1 (MCP-1), RANTES, macrophage inflammatory protein-1α (MIP-1α), and MIP-1β mRNA were easily induced by lipopolysaccharide and/or the proinflammatory cytokines (IFNγ and/or TNF-α), respectively. Addition of both IFNγ and TNF-α together did not lead to an additive effect but resulted in the inhibition of MCP-1 and MIP-1β mRNA expression, indicating that interaction between chemokines and cytokines may play a key role in regulating the local immune response of resident and infiltrating cells at the site of lesion. Interestingly, ultraviolet light-inactivated measles virus, but not cytomegalovirus, strongly induced expression of MCP-1, RANTES, MIP-1α, and MIP-1β mRNA in human embryonic astrocytes, especially MCP-1 and MIP-1β. An association occurs between the β-family chemokine expression in astrocytes and inflammatory factors/virus, suggesting a possible role for β-family chemokines in the pathogenesis of CNS inflammatory disease.  相似文献   

11.
12.
Dendritic cells (DCs) play a pivotal role in host defense against invaded pathogens including fungi, while DCs are targeted by fungi for deleterious regulation of the host immune response. A few studies have reported fungal modulation of DC function in these immunocompromised AIDS patients. Cryptococcus neoformans (C. neoformans) is referred as one of the opportunistic fungi of AIDS. Here, we isolated native C. neoformans from an AIDS patient and investigated its effects on DC activation and function. Stimulation of C. neoformans matured DCs, and enhanced DC-mediated HIV-1 trans-infection; moreover, C. neoformans-stimulated DCs promoted the activation of resting T cells and provided more susceptible targets for HIV-1 infection. Microbial translocation has been proposed as the cause of systemic immune activation in chronic HIV-1 infection. Understanding the potential effects of pathogens on HIV-1-DC interactions could help elucidate viral pathogenesis and provide a new insight for against the spread of HIV.  相似文献   

13.
TGF-beta1 (TGF) has been implicated in the pathogenesis of several chronic infections and is thought to promote microbial persistence by interfering with macrophage function. In rats with experimental pulmonary cryptococcosis, increased lung levels of TGF were present at 12 mo of infection. Within the lung, expression of TGF localized to epithelioid cells and foamy macrophages in areas of inflammation. Increased TGF expression was also observed in the lungs of experimentally infected mice and a patient with pulmonary cryptococcosis. TGF reduced Ab and serum-mediated phagocytosis of Cryptococcus neoformans by rat alveolar macrophages (AM) and peripheral blood monocytes, and this was associated with decreased chemokine production and oxidative burst. Interestingly, TGF-treated rat AM limited both intracellular and extracellular growth of C. neoformans. Control of C. neoformans growth by TGF-treated rat AM was due to increased secretion of lysozyme, a protein with potent antifungal activity. The effects of TGF on the course of infection were dependent on the timing of TGF administration relative to the time of infection. TGF treatment of chronically infected rats resulted in reduced lung fungal burden, while treatment early in the course of infection resulted in increased fungal burden. In summary, our studies suggest a dual role for TGF in persistent fungal pneumonia whereby it contributes to the local control of infection by enhancing macrophage antifungal efficacy through increased lysozyme secretion, while limiting inflammation by inhibiting macrophage/monocyte phagocytosis and reducing associated chemokine production and oxidative burst.  相似文献   

14.
Chemokines provide directional cues for leukocyte migration and activation that are essential for normal leukocytic trafficking and for host responses during processes such as inflammation, infection, and cancer. Recently we reported that matrix metalloproteinases (MMPs) modulate the activity of the CC chemokine monocyte chemoattractant protein-3 by selective proteolysis to release the N-terminal tetrapeptide. Here we report the N-terminal processing, also at position 4-5, of the CXC chemokines stromal cell-derived factor (SDF)-1alpha and beta by MMP-2 (gelatinase A). Robustness of the MMP family for chemokine cleavage was revealed from identical cleavage site specificity of MMPs 1, 3, 9, 13, and 14 (MT1-MMP) toward SDF-1; selectivity was indicated by absence of cleavage by MMPs 7 and 8. Efficient cleavage of SDF-1alpha by MMP-2 is the result of a strong interaction with the MMP hemopexin C domain at an exosite that overlaps the monocyte chemoattractant protein-3 binding site. The association of SDF-1alpha with different glycosaminoglycans did not inhibit cleavage. MMP cleavage of SDF-1alpha resulted in loss of binding to its cognate receptor CXCR-4. This was reflected in a loss of chemoattractant activity for CD34(+) hematopoietic progenitor stem cells and pre-B cells, and unlike full-length SDF-1alpha, the MMP-cleaved chemokine was unable to block CXCR-4-dependent human immunodeficiency virus-1 infection of CD4(+) cells. These data suggest that MMPs may be important regulatory proteases in attenuating SDF-1 function and point to a deep convergence of two important networks, chemokines and MMPs, to regulate leukocytic activity in vivo.  相似文献   

15.
Although G-CSF has been shown to increase neutrophil (polymorphonuclear leukocyte, PMN) recruitment into the lung during pulmonary infection, relatively little is known about the local chemokine profiles associated with this enhanced PMN delivery. We investigated the effects of G-CSF and PMN recruitment on the pulmonary chemokine response to intratracheal LPS. Rats pretreated twice daily for 2 days with an s.c. injection of G-CSF (50 microg/kg) were sacrificed at either 90 min or 4 h after intratracheal LPS (100 microg) challenge. Pulmonary recruitment of PMNs was not observed at 90 min post LPS challenge. Macrophage inflammatory protein-2 (MIP-2) and cytokine-induced neutrophil chemoattractant (CINC) concentrations in bronchoalveolar lavage (BAL) fluid were similar in animals pretreated with or without G-CSF at this time. G-CSF pretreatment enhanced pulmonary recruitment of PMNs (5-fold) and greatly reduced MIP-2 and CINC levels in BAL fluid at 4 h after LPS challenge. In vitro, the presence of MIP-2 and CINC after LPS stimulation of alveolar macrophages was decreased by coculturing with circulating PMNs but not G-CSF. G-CSF had no direct effect on LPS-induced MIP-2 and CINC mRNA expression by alveolar macrophages. Pulmonary recruited PMNs showed a significant increase in cell-associated MIP-2 and CINC. Cell-associated MIP-2 and CINC of circulating PMNs were markedly increased after exposure of these cells to the BAL fluid of LPS-challenged lungs. These data suggest that recruited PMNs are important cells in modulating the local chemokine response. G-CSF augments PMN recruitment and, thereby, lowers local chemokine levels, which may be one mechanism resulting in the subsidence of the host proinflammatory response.  相似文献   

16.
Oral fibroblasts as well as keratinocytes are thought to influence host inflammatory responses against Candida albicans. However, little is known about chemokine expressions in oral fibroblasts against C. albicans infection. We therefore examined whether C. albicans induced several chemokines including fractalkine/CX3CL1 (CX3CL1), a unique chemokine that has properties of both chemoattractants and adhesion molecules, in fibroblasts and keratinocytes. The addition of C. albicans live cells to human immortalized oral keratinocytes (RT7) resulted in increases in the mRNA levels of multiple chemokines, but not of CX3CL1. In contrast, live and heat-killed C. albicans caused an increase in CX3CL1 mRNA and protein expression in human immortalized oral fibroblasts (GT1). CX3CL1 mRNA expression in GT1 cells was also enhanced by stimulation with a nonalbicans species of Candida. Further, the CX3CL1 chemokine domain showed antifungal activity against C. albicans. CX3CL1 secreted by oral fibroblasts appears to play an important role in the oral immune response to C. albicans infection.  相似文献   

17.
Pulmonary clearance of the encapsulated yeast Cryptococcus neoformans requires the development of T1-type immunity. The objective of this study was to determine the role of CCR2 in leukocyte recruitment and development of T1-type cell-mediated immunity during pulmonary C. neoformans infection. Intratracheal inoculation of C. neoformans into CCR2 knockout (CCR2-/-) mice produced a prolonged pulmonary infection (5000-fold CFU at 6 wk compared with CCR2+/+ mice) and significant dissemination to the spleen and brain (160- and 800-fold greater). In addition, CCR2 deficiency resulted in significantly reduced recruitment of macrophages (weeks 1-3) and CD8+ T cells (weeks 1-2) into the lungs. The immune response in CCR2-/- mice was characterized by chronic pulmonary eosinophilia, crystal deposition in the lungs, pulmonary leukocyte production of IL-4 and IL-5 but not IFN-gamma, lack of anticryptococcal delayed-type hypersensitivity, and high levels of serum IgE. These results demonstrate that expression of CCR2 is required for the development of a T1-type response to C. neoformans infection and lack of CCR2 results in a switch to a T2-type response. Thus, CCR2 plays a critical role in promoting the development of T1- over T2-type immune responses in the lung following cryptococcus infection.  相似文献   

18.
Respiratory viral infections result in severe pulmonary injury, to which host immune response may be a significant contributor. At present, it is not entirely clear the extent to which lung injury is a necessary consequence of host defense. In this report, we use functional genomics approach to characterize the key roles of cellular immunity and immune-inflammatory response in the immunopathology of Sendai virus infection in resistant C57BL/6J and susceptible DBA/2J mice. Infected mice manifested an immune-inflammatory response characterized by the pulmonary influx of neutrophils and mononuclear cells. DBA/2J mice mounted a vigorous immune response, with significant up-regulation of cytokine/chemokine genes in two successive waves through the course of infection. Whereas, C57BL/6J mice displayed an efficient immune response with less severe pathology and clusters of immune-inflammatory responsive genes were exclusively up-regulated on day 4 in this strain. Overall, DBA/2J mice exhibited a dysregulated hyper-inflammatory cytokine/chemokine cascades that does not limit viral spread resulting in a predisposition to severe lung pathology. This response is similar to severe human respiratory paramyxovirus infections, which will serve as a model for the elucidation of hyper-immune inflammatory response that result to severe immunopathology in respiratory viral infections.  相似文献   

19.
Strong evidence for the direct modulation of the immune system by opioids is well documented. Mu-opioids have been shown to alter the release of cytokines important for both host defense and the inflammatory response. Proinflammatory chemokines monocyte chemoattractant protein-1 (MCP-1), RANTES, and IFN-gamma-inducible protein-10 (IP-10) play crucial roles in cell-mediated immune responses, proinflammatory reactions, and viral infections. In this report, we show that [D-Ala(2),N:-Me-Phe(4),Gly-ol(5)]enkephalin (DAMGO), a mu-opioid-selective agonist, augments the expression in human PBMCs of MCP-1, RANTES, and IP-10 at both the mRNA and protein levels. Because of the proposed relationship between opioid abuse and HIV-1 infection, we also examined the impact of DAMGO on chemokine expression in HIV-infected cells. Our results show that DAMGO administration induces a significant increase in RANTES and IP-10 expression, while MCP-1 protein levels remain unaffected in PBMCs infected with the HIV-1 strain. In contrast, we show a dichotomous effect of DAMGO treatment on IP-10 protein levels expressed by T- and M-tropic HIV-infected PBMCs. The differential modulation of chemokine expression in T- and M-tropic HIV-1-infected PBMCs by opioids supports a detrimental role for opioids during HIV-1 infection. Modulation of chemokine expression may enhance trafficking of potential noninfected target cells to the site of active infection, thus directly contributing to HIV-1 replication and disease progression to AIDS.  相似文献   

20.
Recent studies have shown that progesterone, a sex steroid hormone, enhances the sexual transmission of various pathogens, including SIV. The goal of this study was to determine whether progesterone affects mechanisms underlying the sexual transmission of HIV-1. We first studied the effects of various physiologic concentrations of progesterone on the expression of chemokines and chemokine receptors by T cells and macrophages. Chemokines are involved in leukocyte recruitment to peripheral sites; in addition, the chemokine receptors CCR5 and CXCR4 are HIV-1 coreceptors, and their ligands can block HIV-1 infection. Progesterone treatment had no effect on constitutive expression of CCR5 and CXCR4 by nonactivated T cells and macrophages, but significantly inhibited IL-2-induced up-regulation of CCR5 and CXCR4 on activated T cells (p < 0.05). Progesterone also inhibited both mitogen-induced proliferation and chemokine secretion (macrophage inflammatory protein-1alpha, macrophage inflammatory protein-1beta, RANTES) by CD8+ T lymphocytes. Control and progesterone-treated PBMC cultures were also tested for susceptibility to infection by T cell-tropic (HIV-1MN) and macrophage-tropic (HIV-1JR-CSF) viral strains in vitro. Infection with low titers of HIV-1MN was consistently inhibited in progesterone-treated cultures; progesterone effects on infection with the HIV-1JR-CSF strain were more variable, but correlated with progesterone-induced reductions in CCR5 levels. These results indicate that progesterone treatment can inhibit mechanisms underlying HIV-1 transmission, including infection of CD4+ target cells via CXCR4/CCR5 coreceptors and effects on chemokine-mediated recruitment of lymphocytes and monocytes to mucosal epithelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号