首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protection afforded by phosphocitrate, a phosphorylated polycarboxylic acid, against crystal-induced membrane damage to polymorphonuclear leukocytes was studied in vitro. Membranolysis was assessed by nitro blue tetrazolium salt reduction, lactate dehydrogenase release, and scanning electron microscopy. Phosphocitrate protected strongly against hydroxyapatite crystal-induced damage, an action attributable to crystal surface binding of phosphocitrate rather than to the membrane. The ability of phosphocitrate to prevent hydroxyapatite crystallization, together with its membrane protective effect against preformed crystals, would suggest that the compound might have a useful future role against crystal-induced arthropathies.  相似文献   

2.
Lutein is present in the human retina and lens, where it plays a protective role. As lutein is associated with the lipid matrix of biomembranes, the role depends on its membrane location. Experimental studies predicted two orientations of lutein in a phosphatidylcholine (PC) bilayer: vertical and horizontal. Using a molecular dynamics simulation, we observed, in two different PC bilayers, both orientations of lutein, and in each bilayer, a single change from vertical to horizontal orientation or vice versa. Both orientations were stabilized by hydrogen bonding of lutein OH groups with mainly carbonyl but also phosphate oxygen atoms of PC.  相似文献   

3.
The role of p38 mitogen-activated protein (MAP) kinase in the activation of human neutrophils and repression of TNF-alpha-induced apoptosis in response to plasma opsonized crystals of calcium pyrophosphate dihydrate (CPPD) was investigated. We monitored the endogenous phosphotransferase activity of p38 kinase in neutrophils stimulated with CPPD crystals (25 mg/ml) alone or in the presence of TNF-alpha (10 ng/ml), and with TNF-alpha alone. CPPD crystals induced a 2-fold activation of p38 kinase activity over the basal activity that was observed in untreated neutrophils. Furthermore, CPPD crystals repressed the TNF-alpha associated 6-fold induction of p38 kinase phosphotransferase activity to levels associated with CPPD crystal incubation alone in a PD98059 (20 ng/ml) and Wortmannin (100 nM) sensitive manner. Inhibition of CPPD crystal-induced activation of the neutrophil inflammatory response as measured by chemiluminescence, superoxide anion generation and degranulation as determined by myeloperoxidase and lysozyme release was observed in the presence of the specific p38 MAP kinase inhibitor SB203580 (5 microM). CPPD crystal associated repression of TNF-alpha-induced activation of neutrophil apoptosis as determined by DNA fragmentation correlated with the CPPD crystal mediated inhibition of p38 kinase activity, probably through crystal inhibition of caspase 3. Together, our results indicate that the CPPD crystal associated inflammatory response is regulated through the activation of p38 kinase to sub-apoptotic levels, and that the repression of the TNF-alpha-induced apoptosis program in neutrophils is mediated via the repression of caspase 3 mediated apoptosis-associated p38 kinase activity.  相似文献   

4.
We have determined the molecular structures of commonly used phosphatidylglycerols (PGs) in the commonly accepted biologically relevant fluid phase. This was done by simultaneously analyzing small angle neutron and X-ray scattering data, with the constraint of measured lipid volumes. We report the temperature dependence of bilayer parameters obtained using the one-dimensional scattering density profile model - which was derived from molecular dynamics simulations - including the area per lipid, the overall bilayer thickness, as well as other intrabilayer parameters (e.g., hydrocarbon thickness). Lipid areas are found to be larger than their phosphatidylcholine (PC) counterparts, a result likely due to repulsive electrostatic interactions taking place between the charged PG headgroups even in the presence of sodium counterions. In general, PG and PC bilayers show a similar response to changes in temperature and chain length, but differ in their response to chain unsaturation. For example, compared to PC bilayers, the inclusion of a first double bond in PG lipids results in a smaller incremental change to the area per lipid and bilayer thickness. However, the extrapolated lipid area of saturated PG lipids to infinite chain length is found to be similar to that of PCs, an indication of the glycerol-carbonyl backbone's pivotal role in influencing the lipid-water interface.  相似文献   

5.
The disaccharide trehalose is well known for its bioprotective properties. Produced in large amounts during stress periods in the life of organisms able to survive potentially damaging conditions, trehalose plays its protective role by stabilizing biostructures such as proteins and lipid membranes. In this study, molecular dynamics simulations are used to investigate the interaction of trehalose with a phospholipid bilayer at atomistic resolution. Simulations of the bilayer in the absence and in the presence of trehalose at two different concentrations (1 or 2 molal) are carried out at 325 K and 475 K. The results show that trehalose is able to minimize the disruptive effect of the elevated temperature and stabilize the bilayer structure. At both temperature, trehalose is found to interact directly with the bilayer through hydrogen bonds. However, the water molecules at the bilayer surface are not completely replaced. At high temperature, the protective effect of trehalose is correlated with a significant increase in the number of trehalose-bilayer hydrogen bonds, predominantly through an increase in the number of trehalose molecules bridging three or more lipid molecules.  相似文献   

6.
It is generally accepted that ions interact directly with lipids in biological membranes. Decades of biophysical studies on pure lipid bilayer systems have shown that only certain types of ions, most significantly large anions and multivalent cations, can fundamentally alter the structure and dynamics of lipid bilayers. It has long been accepted that at physiological concentrations NaCl ions do not alter the physical behavior or structure of bilayers composed solely of zwitterionic phosphatidylcholine (PC) lipids. Recent X-ray scattering experiments have reaffirmed this dogma, showing that below 1 M concentration, NaCl does not significantly alter bilayer structure. However, despite this history, there is an ongoing controversy within the molecular dynamics (MD) simulation community regarding NaCl/PC interactions. In particular, the CHARMM and GROMOS force fields show dramatically different behavior, including the effect on bilayer structure, surface potential, and the ability to form stable, coordinated ion–lipid complexes. Here, using long-timescale, constant-pressure simulations under the newest version of the CHARMM force field, we find that Na+ and Cl associate with PC head groups in a POPC bilayer with approximately equal, though weak, affinity, and that the salt has a negligible effect on bilayer structure, consistent with earlier CHARMM results and more recent X-ray data. The results suggest that interpretation of simulations where lipids interact with charged groups of any sort, including charged proteins, must be carefully scrutinized.  相似文献   

7.
Based on the crystal structure of the vitamin B12 transporter protein of Escherichia coli(BtuCD) a system consisting of the BtuCD transmembrane domain(BtuC) and the palmitoyloleoyl phosphatidylcholine(POPC) lipid bilayer was constructed in silica,and a more-than-57-nanosecond molecular dynamics(MD) simulation was performed on it to reveal the intrinsic functional motions of BtuC.The results showed that a stable protein-lipid bilayer was obtained and the POPC lipid bilayer was able to adjust its thickness to...  相似文献   

8.
Properties of hydrated unsaturated phosphatidylcholine (PC) lipid bilayers containing 40 mol % cholesterol and of pure PC bilayers have been studied. Various methods were applied, including molecular dynamics simulations, self-consistent field calculations, and the pulsed field gradient nuclear magnetic resonance technique. Lipid bilayers were composed of 18:0/18:1(n-9)cis PC, 18:0/18:2(n-6)cis PC, 18:0/18:3(n-3)cis PC, 18:0/20:4(n-6)cis PC, and 18:0/22:6(n-3)cis PC molecules. Lateral self-diffusion coefficients of the lipids in all these bilayers, mass density distributions of atoms and atom groups with respect to the bilayer normal, the C-H and C-C bond order parameter profiles of each phospholipid hydrocarbon chain with respect to the bilayer normal were calculated. It was shown that the lateral self-diffusion coefficient of PC molecules of the lipid bilayer containing 40 mol % cholesterol is smaller than that for a corresponding pure PC bilayer; the diffusion coefficients increase with increasing the degree of unsaturation of one of the PC chains in bilayers of both types (i.e., in pure bilayers or in bilayers with cholesterol). The presence of cholesterol in a bilayer promoted the extension of saturated and polyunsaturated lipid chains. The condensing effect of cholesterol on the order parameters was more pronounced for the double C=C bonds of polyunsaturated chains than for single C-C bonds of saturated chains.  相似文献   

9.
Cationic lipid membranes are known to form compact complexes with DNA and to be effective as gene delivery agents both in vitro and in vivo. Here we employ molecular dynamics simulations for a detailed atomistic study of lipid bilayers consisting of a mixture of cationic dimyristoyltrimethylammonium propane (DMTAP) and zwitterionic dimyristoylphosphatidylcholine (DMPC). Our main objective is to examine how the composition of the DMPC/DMTAP bilayers affects their structural and electrostatic properties in the liquid-crystalline phase. By varying the mole fraction of DMTAP, we have found that the area per lipid has a pronounced nonmonotonic dependence on the DMTAP concentration, with a minimum around the point of equimolar DMPC/DMTAP mixture. We show that this behavior has an electrostatic origin and is driven by the interplay between positively charged TAP headgroups and the zwitterionic phosphatidylcholine (PC) heads. This interplay leads to considerable reorientation of PC headgroups for an increasing DMTAP concentration, and gives rise to major changes in the electrostatic properties of the lipid bilayer, including a significant increase of total dipole potential across the bilayer and prominent changes in the ordering of water in the vicinity of the membrane. Moreover, chloride counterions are bound mostly to PC nitrogens implying stronger screening of PC heads by Cl ions compared to TAP headgroups. The implications of these findings are briefly discussed.  相似文献   

10.
The role of protein kinases in the inhibition of TNF-alpha associated apoptosis of human neutrophils by crystals of calcium pyrophosphate dihydrate (CPPD) (25 mg/ml) was investigated. We monitored the activities of the p44 extracellular signal-regulated kinase 1 (ERK1) and p42 ERK2 mitogen-activated protein (MAP) kinases and phosphatidylinositol 3-kinase (PI3-K)-regulated protein kinase B (Akt) in neutrophils incubated with TNF-alpha and CPPD crystals, separately and in combination, in parallel with the endogenous caspase 3 activity and DNA fragmentation. CPPD crystals were observed to induce a robust and transient activation of ERK1, ERK2, and Akt, whereas TNF-alpha produced only a modest and delayed activation of Akt. In the presence of TNF-alpha, Akt activity was enhanced, and CPPD crystal-induced activation of ERK1 and ERK2 was more sustained than with CPPD crystals alone, but TNF-alpha itself reduced the basal phosphotransferase activities of these MAP kinases. Preincubation with the MAP kinase kinase (MEK1) inhibitors PD98059 (20 ng/ml) and U0126 (250 nM), or the PI3-K inhibitors wortmannin (100 nM) and LY294002 (50 microM) repressed the activation of ERK1, ERK2, and Akt in association with CPPD crystal incubation, in the absence or presence of TNF-alpha. Furthermore, the inhibition of the Mek1/Mek2-->ERK1/ERK2 or PI3-K/Akt pathways reversed CPPD crystal-associated suppression of TNF-alpha-induced caspase 3 activation and neutrophil apoptosis. Together, these results indicate that CPPD crystals function to induce acute inflammatory responses through ERK1/ERK2 and PI3-K/Akt-mediated stimulation of neutrophil activation and repression of apoptosis.  相似文献   

11.
The main structural element of biological membranes is a liquid-crystalline lipid bilayer. Other constituents, i.e. proteins, sterols and peptides, either intercalate into or loosely attach to the bilayer. We applied a molecular dynamics simulation method to study membrane systems at various levels of compositional complexity. The studies were started from simple lipid bilayers containing a single type phosphatidylcholine (PC) and water molecules (PC bilayers). As a next step, cholesterol (Chol) molecules were introduced to the PC bilayers (PC-Chol bilayers). These studies provided detailed information about the structure and dynamics of the membrane/water interface and the hydrocarbon chain region in bilayers built of various types of PCs and Chol. This enabled studies of membrane systems of higher complexity. They included the investigation of an integral membrane protein in its natural environment of a PC bilayer, and the antibacterial activity of magainin-2. The latter study required the construction of a model bacterial membrane which consisted of two types of phospholipids and counter ions. Whenever published experimental data were available, the results of the simulations were compared with them.  相似文献   

12.
Anthrax toxin action requires triggering of natural endocytic transport mechanisms whereby the binding component of the toxin forms channels (PA63) within endosomal limiting and intraluminal vesicle membranes to deliver the toxin's enzymatic components into the cytosol. Membrane lipid composition varies at different stages of anthrax toxin internalization, with intraluminal vesicle membranes containing ~70% of anionic bis(monoacylglycero)phosphate lipid. Using model bilayer measurements, we show that membrane lipids can have a strong effect on the anthrax toxin channel properties, including the channel-forming activity, voltage-gating, conductance, selectivity, and enzymatic factor binding. Interestingly, the highest PA63 insertion rate was observed in bis(monoacylglycero)phosphate membranes. The molecular dynamics simulation data show that the conformational properties of the channel are different in bis(monoacylglycero)phosphate compared to PC, PE, and PS lipids. The anthrax toxin protein/lipid bilayer system can be advanced as a novel robust model to directly investigate lipid influence on membrane protein properties and protein/protein interactions.  相似文献   

13.
Sterol molecules are essential for maintaining the proper structure and function of eukaryotic cell membranes. The influence of cholesterol (the principal sterol of higher animals) on the lipid bilayer properties was extensively studied by both experimental and simulation methods. In contrast, the effect of ergosterol (the principal fungal sterol) on the membrane structure and dynamics is much less recognized. This work presents the results of comparative molecular dynamics simulation of the hydrated dimyristoylphosphatidylcholine bilayer containing approximately 25 mol % of cholesterol or ergosterol. A detailed analysis of the molecular properties (e.g., bilayer thickness, lipid order, diffusion, intermolecular interactions, etc.) of both sterol-induced liquid-ordered membrane phases is presented. Presence of sterols in the membrane significantly changes its property, especially fluidity and molecular packing. Moreover, in accordance with the experiments, our calculations show that, compared to cholesterol, ergosterol has higher ordering effect on the phospholipid acyl chains. This different influence on the properties of the lipid bilayer stems from differences in conformational freedom of sterol side chains. Additionally, obtained models of lipid membranes containing human and fungal sterols, constituting the result of our work, can be also utilized in other chemotherapeutic studies on interaction of selected ligands (e.g., antifungal compounds) with membranes.  相似文献   

14.
The thermotropic phase behavior and lateral structure of dipalmitoylphosphatidylcholine (DPPC) lipid bilayers containing an acylated peptide has been characterized by differential scanning calorimetry (DSC) on vesicles and atomic force microscopy (AFM) on mica-supported bilayers. The acylated peptide, which is a synthetic decapeptide N-terminally linked to a C14 acyl chain (C14-peptide), is incorporated into DPPC bilayers in amounts ranging from 0-20 mol %. The calorimetric scans of the two-component system demonstrate a distinct influence of the C14-peptide on the lipid bilayer thermodynamics. This is manifested as a concentration-dependent downshift of both the main phase transition and the pretransition. In addition, the main phase transition peak is significantly broadened, indicating phase coexistence. In the AFM imaging scans we found that the C14-peptide, when added to supported gel phase DPPC bilayers, inserts preferentially into preexisting defect regions and has a noticeable influence on the organization of the surrounding lipids. The presence of the C14-peptide gives rise to a laterally heterogeneous bilayer structure with coexisting lipid domains characterized by a 10 A height difference. The AFM images also show that the appearance of the ripple phase of the DPPC lipid bilayers is unaffected by the C14-peptide. The experimental results are supported by molecular dynamics simulations, which show that the C14-peptide has a disordering effect on the lipid acyl chains and causes a lateral expansion of the lipid bilayer. These effects are most pronounced for gel-like bilayer structures and support the observed downshift in the phase-transition temperature. Moreover, the molecular dynamics data indicate a tendency of a tryptophan residue in the peptide sequence to position itself in the bilayer headgroup region.  相似文献   

15.
SGTx1 is a gating-modifier toxin that has been shown to inhibit the voltage-gated potassium channel Kv2.1. SGTx1 is thought to bind to the S3b-S4a region of the voltage-sensor, and is believed to alter the energetics of gating. Gating-modifier toxins such as SGTx1 are of interest as they can be used to probe the structure and dynamics of their target channels. Although there are experimental data for SGTx1, its interaction with lipid bilayer membranes remains to be characterized. We performed atomistic and coarse-grained molecular dynamics simulations to study the interaction of SGTx1 with a POPC and a 3:1 POPE/POPG lipid bilayer membrane. We reveal the preferential partitioning of SGTx1 into the water/membrane interface of the bilayer. We also show that electrostatic interactions between the charged residues of SGTx1 and the lipid headgroups play an important role in stabilizing SGTx1 in a bilayer environment.  相似文献   

16.
We have studied the structural properties of monounsaturated diacylphosphatidylcholine lipid bilayers (i.e., diCn:1PC, where n = 14, 16, 18, 20, 22, and 24 is the number of acyl chain carbons). High-resolution x-ray scattering data were analyzed in conjunction with contrast-varied neutron scattering data using a technique we recently developed. Analyses of the data show that the manner by which bilayer thickness increases with increasing n in monounsaturated diacylphosphatidylcholines is dependent on the double bond's position. For commonly available monounsaturated diacylphosphatidylcholines, this results in the nonlinear behavior of both bilayer thickness and lipid area, whereas for diC18:1PC bilayers, lipid area assumes a maximum value. It is worthwhile to note that compared to previous data, our results indicate that lipid areas are smaller by ∼10%. This observation highlights the need to revisit lipid areas, as they are often used in comparisons with molecular dynamics simulations. Moreover, simulators are encouraged to compare their results not only to x-ray scattering data, but to neutron data as well.  相似文献   

17.
SGTx1 is a gating-modifier toxin that has been shown to inhibit the voltage-gated potassium channel Kv2.1. SGTx1 is thought to bind to the S3b-S4a region of the voltage-sensor, and is believed to alter the energetics of gating. Gating-modifier toxins such as SGTx1 are of interest as they can be used to probe the structure and dynamics of their target channels. Although there are experimental data for SGTx1, its interaction with lipid bilayer membranes remains to be characterized. We performed atomistic and coarse-grained molecular dynamics simulations to study the interaction of SGTx1 with a POPC and a 3:1 POPE/POPG lipid bilayer membrane. We reveal the preferential partitioning of SGTx1 into the water/membrane interface of the bilayer. We also show that electrostatic interactions between the charged residues of SGTx1 and the lipid headgroups play an important role in stabilizing SGTx1 in a bilayer environment.  相似文献   

18.
We investigate the structure of cholesterol-containing membranes composed of either short-chain (diC14:1PC) or long-chain (diC22:1PC) monounsaturated phospholipids. Bilayer structural information is derived from all-atom molecular dynamics simulations, which are validated via direct comparison to x-ray scattering experiments. We show that the addition of 40 mol % cholesterol results in a nearly identical increase in the thickness of the two different bilayers. In both cases, the chain ordering dominates over the hydrophobic matching between the length of the cholesterol molecule and the hydrocarbon thickness of the bilayer, which one would expect to cause a thinning of the diC22:1PC bilayer. For both bilayers there is substantial headgroup rearrangement for lipids directly in contact with cholesterol, supporting the so-called umbrella model. Importantly, in diC14:1PC bilayers, a dynamic network of hydrogen bonds stabilizes long-lived reorientations of some cholesterol molecules, during which they are found to lie perpendicular to the bilayer normal, deep within the bilayer’s hydrophobic core. Additionally, the simulations show that the diC14:1PC bilayer is significantly more permeable to water. These differences may be correlated with faster cholesterol flip-flop between the leaflets of short-chain lipid bilayers, resulting in an asymmetric distribution of cholesterol molecules. This asymmetry was observed experimentally in a case of unilamellar vesicles (ULVs), and reproduced through a set of novel asymmetric simulations. In contrast to ULVs, experimental data for oriented multilamellar stacks does not show the asymmetry, suggesting that it results from the curvature of the ULV bilayers.  相似文献   

19.
The distribution of 1H-pyrrolo[3,2-h]quinoline (PQ), 11H-dipyrido[2,3-a]carbazole (PC) and 7-azaindole (7AI) at a water/membrane interface has been investigated by molecular dynamics (MD) simulations. The MD study focused on favorable binding sites of the azaaromatic probes across a dipalmitoylphosphatidylcholine (DPPC) bilayer. Our simulations show that PQ and PC are preferably accommodated at the hydrocarbon core of the bilayer below the glycerol moiety. In addition, it is found that the hydrophobic aromatic parts of the probes are located inside a more ordered region of DPPC, consisting of hydrophobic lipid chains. In contrast to PQ and PC, 7AI is characterized by a broad distribution between a DPPC interface and water, so that the three preferable binding sites are found across a water/membrane interface. It is found that in the sequence 7AI-PQ-PC, due to the increase of the number of aromatic rings and, hence, the hydrophobic character of the probes, the depth of the probe localization is gradually shifted deeper inside the hydrocarbon core of the bilayer. We found that the probe-lipid hydrogen-bonding contributes weakly to the favorable localizations of the azaaromatic probes inside the DPPC bilayer, so that the probe localization is mainly driven by electrostatic dipole-dipole and van der Waals interactions.  相似文献   

20.
Cholesterol in the plasma membrane plays an important role in the pathogenesis of Alzheimer's disease, but the exact function of cholesterol in the regulation of amyloid-β (Aβ) generation, aggregation, and toxicity remains elusive. To gain insight into the bioactivity of cholesterol, we investigate the effect of cholesterol levels on the interaction of Aβ(1-42) monomer with the zwitterionic 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) bilayer containing different mole fractions of cholesterol from χ=0, 0.2, to 0.4 using all-atom molecular dynamics simulations. Simulation results show that an increased cholesterol level alters the structure, dynamics, and surface chemistry of the lipid bilayer, leading to increased bilayer thickness, hydrophobic chain order, surface hydrophobicity, and decreased lipid mobility. All these effects significantly promote the binding of Aβ to the lipid bilayer. Mechanistically, the adsorption of Aβ on the bilayer is a cooperative process. First, charged residues act as anchors to establish the initial binding of Aβ to phosphate headgroups of the bilayer driven by electrostatic interactions, which further facilitates hydrophobic residues to reside on the bilayer. Once hydrophobic residues especially from C-terminus are locked on the bilayer, the interactions among charged residues, lipid bilayer, and calcium ions are optimized to provide additional attractive forces to stabilize Aβ adsorbed on or inserted into the lipid bilayer. Inclusion of cholesterol makes this binding process more energetically favorable. Upon adsorption on the bilayer, Aβ appears to preferentially adopt α-helical or unstructured conformation. This work supports that cholesterol acts as a promoter for Aβ--membrane interactions, which would facilitate Aβ aggregation and membrane insertion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号