首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactoferrin is a multifunctional mammalian immunity protein that limits microbial growth through sequestration of nutrient iron. Additionally, lactoferrin possesses cationic protein domains that directly bind and inhibit diverse microbes. The implications for these dual functions on lactoferrin evolution and genetic conflicts with microbes remain unclear. Here we show that lactoferrin has been subject to recurrent episodes of positive selection during primate divergence predominately at antimicrobial peptide surfaces consistent with long-term antagonism by bacteria. An abundant lactoferrin polymorphism in human populations and Neanderthals also exhibits signatures of positive selection across primates, linking ancient host-microbe conflicts to modern human genetic variation. Rapidly evolving sites in lactoferrin further correspond to molecular interfaces with opportunistic bacterial pathogens causing meningitis, pneumonia, and sepsis. Because microbes actively target lactoferrin to acquire iron, we propose that the emergence of antimicrobial activity provided a pivotal mechanism of adaptation sparking evolutionary conflicts via acquisition of new protein functions.  相似文献   

2.
Antimicrobial peptides (AMPs), essential components of innate immunity, are found in a range of phylogenetically diverse species and are thought to act by disrupting the membrane integrity of microbes. In this paper, we used evolutionary signatures to identify sites that are most relevant during the functional evolution of these molecules and introduced amino acid substitutions to improve activity. We first demonstrate that the anti-microbial activity of chicken avian β-defensin-8, previously known as gallinacin-12, can be significantly increased against Escherichia coli, Listeria monocytogenes, Salmonella typhimurium, Salmonella typhimurium phoP− mutant and Streptococcus pyogenes through targeted amino acid substitutions, which confer increased peptide charge. However, by increasing the AMP charge through amino acid substitutions at sites predicted to be subject to positive selection, antimicrobial activity against Escherichia coli was further increased. In contrast, no further increase in activity was observed against the remaining pathogens. This result suggests that charge-increasing modifications confer increased broad-spectrum activity to an AMP, whilst positive selection at particular sites is involved in directing the antimicrobial response against specific pathogens. Thus, there is potential for the rational design of novel therapeutics based on specifically targeted and modified AMPs. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

3.
Cysteine-rich secretory proteins (CRISPs) are glycoproteins found exclusively in vertebrates and have broad diversified functions. They are hypothesized to play important roles in mammalian reproduction and in reptilian venom, where they disrupt homeostasis of the prey through several mechanisms, including among others, blockage of cyclic nucleotide-gated and voltage-gated ion channels and inhibition of smooth muscle contraction. We evaluated the molecular evolution of CRISPs in toxicoferan reptiles at both nucleotide and protein levels relative to their nonvenomous mammalian homologs. We show that the evolution of CRISP gene in these reptiles is significantly influenced by positive selection and in snakes (ω = 3.84) more than in lizards (ω = 2.33), whereas mammalian CRISPs were under strong negative selection (CRISP1 = 0.55, CRISP2 = 0.40, and CRISP3 = 0.68). The use of ancestral sequence reconstruction, mapping of mutations on the three-dimensional structure, and detailed evaluation of selection pressures suggests that the toxicoferan CRISPs underwent accelerated evolution aided by strong positive selection and directional mutagenesis, whereas their mammalian homologs are constrained by negative selection. Gene and protein-level selection analyses identified 41 positively selected sites in snakes and 14 sites in lizards. Most of these sites are located on the molecular surface (nearly 76% in snakes and 79% in lizards), whereas the backbone of the protein retains a highly conserved structural scaffold. Nearly 46% of the positively selected sites occur in the cysteine-rich domain of the protein. This directional mutagenesis, where the hotspots of mutations are found on the molecular surface and functional domains of the protein, acts as a diversifying mechanism for the exquisite biological targeting of CRISPs in toxicoferan reptiles. Finally, our analyses suggest that the evolution of toxicoferan-CRISP venoms might have been influenced by the specific predatory mechanism employed by the organism. CRISPs in Elapidae, which mostly employ neurotoxins, have experienced less positive selection pressure (ω = 2.86) compared with the "nonvenomous" colubrids (ω = 4.10) that rely on grip and constriction to capture the prey, and the Viperidae, a lineage that mostly employs haemotoxins (ω = 4.19). Relatively lower omega estimates in Anguimorph lizards (ω = 2.33) than snakes (ω = 3.84) suggests that lizards probably depend more on pace and powerful jaws for predation than venom.  相似文献   

4.
Toll-like receptors (TLRs) have been identified as key sensors of invading microbes by identifying pathogen-associated molecular patterns and activating innate immune responses. Whereas purifying selection has been suggested in mammalian TLR9, evolutionary features of TLR9 in teleosts have not been investigated in detail. We therefore analysed TLR9 DNA sequences of eight teleost species, including zebrafish (Danio rerio), Japanese flounder (Paralichthys olivaceus), pufferfish (Takifugu rubripes), and five seabreams. Eleven sites subjected to positive selection were identified using the codon-substitution models of PAML 3.15. Ten of these 11 sites were found to be associated with leucine-rich repeats (LRRs). Seven of these 10 positively selected sites were associated with the convex surface of the LRR solenoids, leading to variations of the structures of the LRRs possibly by the introduction of flexibility into the LRR solenoids. The positive selection of LRRs in TLR9 may indicate the adaptation of teleosts to different oligodeoxynucleotides present in different bacterial species.  相似文献   

5.
Piscidins constitute a family of cationic antimicrobial peptides that are thought to play an important role in the innate immune response of teleosts. On the one hand they show a remarkable diversity, which indicates that they are shaped by positive selection, but on the other hand they are ancient and have specific targets, suggesting that they are constrained by purifying selection. Until now piscidins had only been found in fish species from the superorder Acanthopterygii but we have recently identified a piscidin gene in Atlantic cod (Gadus morhua), thus showing that these antimicrobial peptides are not restricted to evolutionarily modern teleosts. Nucleotide diversity was much higher in the regions of the piscidin gene that code for the mature peptide and its pro domain than in the signal peptide. Maximum likelihood analyses with different evolution models revealed that the piscidin gene is under positive selection. Charge or hydrophobicity-changing amino acid substitutions observed in positively selected sites within the mature peptide influence its amphipathic structure and can have a marked effect on its function. This diversification might be associated with adaptation to new habitats or rapidly evolving pathogens.  相似文献   

6.
7.
Pervasive adaptive evolution in mammalian fertilization proteins   总被引:1,自引:0,他引:1  
Mammalian fertilization exhibits species specificity, and the proteins mediating sperm-egg interactions evolve rapidly between species. In this study, we demonstrate that the evolution of seven genes involved in mammalian fertilization is promoted by positive Darwinian selection by using likelihood ratio tests (LRTs). Several of these proteins are sperm proteins that have been implicated in binding the mammalian egg coat zona pellucida glycoproteins, which were shown previously to be subjected to positive selection. Taken together, these represent the major candidates involved in mammalian fertilization, indicating positive selection is pervasive amongst mammalian reproductive proteins. A new LRT is implemented to determine if the d(N)/d(S) ratio is significantly greater than one. This is a more refined test of positive selection than the previous LRTs which only identified if there was a class of sites with a d(N)/d(S) ratio >1 but did not test if that ratio was significantly greater than one.  相似文献   

8.
The digestive enzyme chitinase degrades chitin, and is found in a wide range of organisms, from prokaryotes to eukaryotes. Although mammals cannot synthesize or assimilate chitin, several proteins of the glycoside hydrolase (GH) chitinase family GH18, including some with enzymatic activity, have recently been identified from mammalian genomes. Consequently, there is growing interest in molecular evolution of this family of proteins. Here we report on the use of maximum likelihood methods to test for evidence of positive selection in three genes of the chitinase family GH18, all of which are found in mammals. These focal genes are CHIA, CHIT1 and CHI3L1, which encode the chitinase proteins acidic mammalian chitinase, chitotriosidase and cartilage protein 39, respectively. The results of our analyses indicate that each of these genes has undergone independent selective pressure in their evolution. Additionally, we have found evidence of a signature of positive natural selection, with most sites identified as being subject to adaptive evolution located in the catalytic domain. Our results suggest that positive selection on these genes stems from their function in digestion and/or immunity.  相似文献   

9.
10.
Yu L  Jin W  Zhang X  Wang D  Zheng JS  Yang G  Xu SX  Cho S  Zhang YP 《PloS one》2011,6(10):e26579
The leptin gene has received intensive attention and scientific investigation for its importance in energy homeostasis and reproductive regulation in mammals. Furthermore, study of the leptin gene is of crucial importance for public health, particularly for its role in obesity, as well as for other numerous physiological roles that it plays in mammals. In the present work, we report the identification of novel leptin genes in 4 species of Cetacea, and a comparison with 55 publicly available leptin sequences from mammalian genome assemblies and previous studies. Our study provides evidence for positive selection in the suborder Odontoceti (toothed whales) of the Cetacea and the family Phocidae (earless seals) of the Pinnipedia. We also detected positive selection in several leptin gene residues in these two lineages. To test whether leptin and its receptor evolved in a coordinated manner, we analyzed 24 leptin receptor gene (LPR) sequences from available mammalian genome assemblies and other published data. Unlike the case of leptin, our analyses did not find evidence of positive selection for LPR across the Cetacea and Pinnipedia lineages. In line with this, positively selected sites identified in the leptin genes of these two lineages were located outside of leptin receptor binding sites, which at least partially explains why co-evolution of leptin and its receptor was not observed in the present study. Our study provides interesting insights into current understanding of the evolution of mammalian leptin genes in response to selective pressures from life in an aquatic environment, and leads to a hypothesis that new tissue specificity or novel physiologic functions of leptin genes may have arisen in both odontocetes and phocids. Additional data from other species encompassing varying life histories and functional tests of the adaptive role of the amino acid changes identified in this study will help determine the factors that promote the adaptive evolution of the leptin genes in marine mammals.  相似文献   

11.
Enamelin (ENAM) plays an important role in the mineralization of the forming enamel matrix. We have performed an evolutionary analysis of mammalian ENAM to identify highly conserved residues or regions that could have important function (selective pressure), to predict mutations that could be associated with amelogenesis imperfecta in humans, and to identify possible adaptive evolution of ENAM during 200 million years ago of mammalian evolution. In order to fulfil these objectives, we obtained 36-ENAM sequences that are representative of the mammalian lineages. Our results show a remarkably high conservation pattern in the region of the 32-kDa fragment of ENAM, especially its phosphorylation, glycosylation, and proteolytic sites. In primates and rodents we also identified several sites under positive selection, which could indicate recent evolutionary changes in ENAM function. Furthermore, the analysis of the unusual signal peptide provided new insights on the possible regulation of ENAM secretion, a hypothesis that should be tested in the near future. Taken together, these findings improve our understanding of ENAM evolution and provide new information that would be useful for further investigation of ENAM function as well as for the validation of mutations leading to amelogenesis imperfecta.  相似文献   

12.
宋晓军  谢凯斌  张艳萍  金萍 《遗传》2014,36(10):1027-1035
植物在进化过程中为了适应外界环境,已经具有一套完整的抵抗外界特殊环境的调控系统。但是,关于水稻抗逆相关基因的分子进化方面的研究还未见报道。文章通过Plant Tolerance Gene Database数据库,获得22个水稻抗逆相关基因。利用比较基因组学和生物信息学方法对水稻抗逆相关基因的进化动态进行研究,结果表明水稻抗逆相关基因在低等植物中比较保守;随着植物的不断进化和生存环境的改变,其基因数量也随之增加。具有相似抗性功能的基因往往具有相似的基因结构和基序(motif)结构。文章还发现4个保守motif 的存在:HRDXK、DXXSXG、LLPR和GXGXXG(X代表任意氨基酸)。在GSK1、RAN2抗逆基因中发现了3个特有的motif结构:GSK1特有的P-rich motif,RAN2特有的G-rich motif和E-rich motif。推测这些保守的motif结构与基因的抗逆功能密切相关。进化速率分析结果表明,尽管植物抗逆性相关基因在进化过程中受到较强的纯化选择作用,但是仍然有50%的抗逆性相关基因存在正选择位点。这些正选择位点的存在有可能为基因适应外界环境变化提供了重要的物质基础。  相似文献   

13.
14.
Experimental evolution of resistance to an antimicrobial peptide   总被引:2,自引:0,他引:2  
A novel class of antibiotics based on the antimicrobial properties of immune peptides of multicellular organisms is attracting increasing interest as a major weapon against resistant microbes. It has been claimed that cationic antimicrobial peptides exploit fundamental features of the bacterial cell so that resistance is much less likely to evolve than in the case of conventional antibiotics. Population models of the evolutionary genetics of resistance have cast doubt on this claim. We document the experimental evolution of resistance to a cationic antimicrobial peptide through continued selection in the laboratory. In this selection experiment, 22/24 lineages of Escherichia coli and Pseudomonas fluorescens independently evolved heritable mechanisms of resistance to pexiganan, an analogue of magainin, when propagated in medium supplemented with this antimicrobial peptide for 600-700 generations.  相似文献   

15.
Widespread positive selection in synonymous sites of mammalian genes   总被引:5,自引:0,他引:5  
Evolution of protein sequences is largely governed by purifying selection, with a small fraction of proteins evolving under positive selection. The evolution at synonymous positions in protein-coding genes is not nearly as well understood, with the extent and types of selection remaining, largely, unclear. A statistical test to identify purifying and positive selection at synonymous sites in protein-coding genes was developed. The method compares the rate of evolution at synonymous sites (Ks) to that in intron sequences of the same gene after sampling the aligned intron sequences to mimic the statistical properties of coding sequences. We detected purifying selection at synonymous sites in approximately 28% of the 1,562 analyzed orthologous genes from mouse and rat, and positive selection in approximately 12% of the genes. Thus, the fraction of genes with readily detectable positive selection at synonymous sites is much greater than the fraction of genes with comparable positive selection at nonsynonymous sites, i.e., at the level of the protein sequence. Unlike other genes, the genes with positive selection at synonymous sites showed no correlation between Ks and the rate of evolution in nonsynonymous sites (Ka), indicating that evolution of synonymous sites under positive selection is decoupled from protein evolution. The genes with purifying selection at synonymous sites showed significant anticorrelation between Ks and expression level and breadth, indicating that highly expressed genes evolve slowly. The genes with positive selection at synonymous sites showed the opposite trend, i.e., highly expressed genes had, on average, higher Ks. For the genes with positive selection at synonymous sites, a significantly lower mRNA stability is predicted compared to the genes with negative selection. Thus, mRNA destabilization could be an important factor driving positive selection in nonsynonymous sites, probably, through regulation of expression at the level of mRNA degradation and, possibly, also translation rate. So, unexpectedly, we found that positive selection at synonymous sites of mammalian genes is substantially more common than positive selection at the level of protein sequences. Positive selection at synonymous sites might act through mRNA destabilization affecting mRNA levels and translation.  相似文献   

16.
Members of the family Suidae have diverged over extended evolutionary periods in diverse environments, suggesting that adaptation in response to endemic infectious agents may have occurred. Toll-like receptors (TLRs) comprise a multigene family that acts as the first line of defense against infectious microbes at the host-environment interface. We hypothesized that across the Suidae, positive selection mediated by infectious agents has contributed to the evolution of TLR diversity. Thus, we analyzed Sus scrofa, Sus barbatus, Sus verrucosus, Sus celebensis, Sus scebifrons, Babyrousa babyrussa, Potamochoerus larvatus, Potamochoerus porcus and Phacochoerus africanus genomes. Specifically, analyses were performed to identify evidence of positive selection using Maximum likelihood (ML) methods within a phylogenetic framework for bacterial and viral sensing Suidae TLR extracellular domains. Our analyses did not reveal evidence of positive selection for TLR3 and TLR7, suggesting strong functional conservation among these two genes for members of the Suidae. Positive selection was inferred for Suidae TLR1, TLR2, TLR6 and TLR8 evolution. ML methods identified amino acid sites of the bacterial sensing TLR1, TLR2, TLR6 and the viral sensing TLR8 to be under persistent positive selection. Some of these sites are in close proximity to functionally relevant sites, further strengthening the case for pathogen mediated selection for these sites. The branch leading to the genus Sus demonstrated evidence of episodic positive selection for TLR1, indicating selection mediated by infectious agents encountered within the specific geographic origin of the Sus. These results indicate that species of the Suidae have positively selected residues within functional domains of TLRs reflective of prior infections. Thus, TLR genes represent candidates for experimental validation to determine their functional role in antibacterial and antiviral activity within members of the Suidae.  相似文献   

17.
Accelerated rates of mitochondrial protein evolution have been proposed to reflect Darwinian coadaptation for efficient energy production for mammalian flight and brain activity. However, several features of mammalian mtDNA (absence of recombination, small effective population size, and high mutation rate) promote genome degradation through the accumulation of weakly deleterious mutations. Here, we present evidence for "compensatory" adaptive substitutions in nuclear DNA- (nDNA) encoded mitochondrial proteins to prevent fitness decline in primate mitochondrial protein complexes. We show that high mutation rate and small effective population size, key features of primate mitochondrial genomes, can accelerate compensatory adaptive evolution in nDNA-encoded genes. We combine phylogenetic information and the 3D structure of the cytochrome c oxidase (COX) complex to test for accelerated compensatory changes among interacting sites. Physical interactions among mtDNA- and nDNA-encoded components are critical in COX evolution; amino acids in close physical proximity in the 3D structure show a strong tendency for correlated evolution among lineages. Only nuclear-encoded components of COX show evidence for positive selection and adaptive nDNA-encoded changes tend to follow mtDNA-encoded amino acid changes at nearby sites in the 3D structure. This bias in the temporal order of substitutions supports compensatory weak selection as a major factor in accelerated primate COX evolution.  相似文献   

18.
Influenza A viruses are single-stranded RNA viruses capable of evolving rapidly to adapt to environmental conditions. Examples include the establishment of a virus in a novel host or an adaptation to increasing immunity within the host population due to prior infection or vaccination against a circulating strain. Knowledge of the viral protein regions under positive selection is therefore crucial for surveillance. We have developed a method for detecting positively selected patches of sites on the surface of viral proteins, which we assume to be relevant for adaptive evolution. We measure positive selection based on dN/dS ratios of genetic changes inferred by considering the phylogenetic structure of the data and suggest a graph-cut algorithm to identify such regions. Our algorithm searches for dense and spatially distinct clusters of sites under positive selection on the protein surface. For the hemagglutinin protein of human influenza A viruses of the subtypes H3N2 and H1N1, our predicted sites significantly overlap with known antigenic and receptor-binding sites. From the structure and sequence data of the 2009 swine-origin influenza A/H1N1 hemagglutinin and PB2 protein, we identified regions that provide evidence of evolution under positive selection since introduction of the virus into the human population. The changes in PB2 overlap with sites reported to be associated with mammalian adaptation of the influenza A virus. Application of our technique to the protein structures of viruses of yet unknown adaptive behavior could identify further candidate regions that are important for host-virus interaction.  相似文献   

19.
Sperm-egg interaction is a crucial step in fertilization, yet the identity of most interacting sperm-egg proteins that mediate this process remains elusive. Rapid evolution of some fertilization proteins has been observed in a number of species, including evidence of positive selection in the evolution of components of the mammalian egg coat. The rapid evolution of the egg-coat proteins could strongly select for changes on the sperm receptor, to maintain the interaction. Here, we present evidence that positive selection has driven the evolution of PKDREJ, a candidate sperm receptor of mammalian egg-coat proteins. We sequenced PKDREJ from a panel of 14 primates, including humans, and conducted a comparative maximum-likelihood analysis of nucleotide changes and found evidence of positive selection. An additional panel of 48 humans was surveyed for nucleotide polymorphisms at the PKDREJ locus. The regions predicted to have been subject to adaptive evolution among primates show several amino acid polymorphisms within humans. The distribution of polymorphisms suggests that balancing selection may maintain diverse PKDREJ alleles in some populations. It remains unknown whether there are functional differences associated with these diverse alleles, but their existence could have consequences for human fertility.  相似文献   

20.
Nonrandom patterns associated with adaptively evolving genes can shed light on how selection and mutation produce rapid changes in sequences. I examine such patterns in two independent families of antimicrobial peptide genes: those in frogs, which are known to have evolved under positive selection, and those in flatfishes, which I show have also evolved under positive selection. I address two recently proposed hypotheses about the molecular evolution of antimicrobial peptide genes. The first is that the mature peptide region is replicated by an error-prone polymerase that increases the mutation rate and the transversion/transition ratio compared to the signal sequence of the same genes. The second is that mature peptides evolve in a coordinated fashion with their propieces, such that a change in net charge in one molecular region prompts an opposite change in charge in the other region. I test these hypotheses using alternative methods that minimize alignment errors, correct for phylogenetic nonindependence, reduce sequence saturation, and account for differing selection pressures on different regions of the gene. In both gene families I show that divergence at both synonymous and nonsynonymous sites within the mature peptide region is enhanced. However, in neither gene family is there evidence of an increased mutational transversion/transition ratio or coordinated evolution. My observations are consistent with either an elevated mutation rate in an adaptively evolving gene region or widespread selection on “silent” sites. These hypotheses challenge the assumption that mutations are random and can be measured by the synonymous substitution rate. [Reviewing Editor: Dr. Willie J. Swanson]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号