首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Haim Garty  S.Roy Caplan 《BBA》1977,459(3):532-545
The uptake of rubidium in intact Halobacterium halobium cells was followed, and found to be light-dependent. The exchange process is slow, the steady-state rate of 86Rb+/Rb+ exchange being given by k = 6.3 · 10?4 min?1. Starved cells exhibited a faster rate than unstarved cells. The influx of 86Rb+ was almost completely blocked in the presence of proton conductors (CCCP, FCCP, and SF 6847), and was sensitive to the presence of the permeant cation TPMP+. Valinomycin very slightly increased the rate of uptake, while 1 · 10?6 M nigericin showed significant inhibition. On the other hand, release of 86Rb+ was not light-dependent, although still affected by uncouplers, TPMP+, and nigericin. These experimental observations may be explained in terms of a passive flux driven by an electrical potential difference, and influenced by positive isotope interaction within the membrane. In carefully matched influx-efflux studies, the extent of the positive isotope interaction was measured. Using the formal treatment of Kedem and Essig, the ratio (exchange resistance)/(resistance to net flow) for 86Rb+ was found to be 1.7.  相似文献   

2.
The light-dependent uptake of triphenylmethylphosphonium (TPMP+) and of 5,5-dimethyloxazolidine-2,4-dione (DMO) by starved purple cells of Halobacterium halobium was investigated. DMO uptake was used to calculate the pH difference (deltapH) across the membrane, and TPMP+ was used as an index of the electrical potential difference, deltapsi. Under most conditions, both in the light and in the dark, the cells are more alkaline than the medium. In the light at pH 6.6, deltapH amounts to 0.6-0.8 pH unit. Its value can be increased to 1.5-2.0 by either incubating the cells with TPMP+ (10(-3) M) or at low external pH (5.5). --deltapH can be lowered by uncoupler or by nigericin. The TPMP+ uptake by the cells indicates a large deltapsi across the membrane, negative inside. It was estimated that in the light, at pH 6.6, deltapsi might reach a value of about 100 mV and that consequently the electrical equivalent of the proton electrochemical potential difference, deltamuH+/F, amounts under these conditions to about 140 mV. The effects of different ionophores on the light-drive proton extrusion by the cells were in agreement with the effects of these compounds on --deltapH.  相似文献   

3.
Valinomycin-induced potassium diffusion potential (delta psi, inside negative) in the liposomes made of phosphatidylcholine and various amounts of cholesterol was measured by uptake of 86Rb+, tetraphenylphosphonium (TPP+) or triphenylmethylphosphonium (TPMP+). In any liposome, the values of membrane potential obtained by 86Rb+ uptake (delta psi Rb) agreed well with those calculated from the imposed potassium concentration gradient using the Nernst equation, and were not affected by the presence of cholesterol. However, both delta psi TPP and delta psi TPMP showed smaller values than delta psi Rb when the cholesterol content in liposomes increased. delta psi TPMP at a stationary state was much smaller than delta psi TPP. The orientational order parameter of the lipids' bilayer with various cholesterol content was estimated from fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene. The results indicated that the permeation of TPP+ or TPMP+ into liposomes containing a large amount of cholesterol is strongly restricted by the high ordering of phosphatidylcholine acyl chains.  相似文献   

4.
The lipophilic cation triphenylmethylphosphonium (TPMP+) and the potassium analog Rb+, were used to monitor the membrane potential (delta psi) of freshly isolated rabbit type II alveolar epithelial cells. Type II cells were found to accumulate TPMP+ rapidly at 37 degrees C in Hanks' balanced-salt solution with 5 microM tetraphenyl boron, but this accumulation was partially due to non-membrane potential dependent binding of TPMP+ to the cell. Lysophosphatidylcholine (lysoPC) was found to abolish delta psi and permitted correction for bound TPMP+ or Rb+. TPMP+ remaining in the cell following correction for binding represents the sum of mitochondrial and plasma membrane potential dependent accumulation. The accumulation of Rb+ by the type II cell was found to be independent of the mitochondrial membrane potential and indicated a trans-plasma membrane Rb+ distribution potential of -62.9 +/- 4 mV. A similar value was obtained by estimating the plasma membrane potential dependent accumulation of TPMP+ in type II cells whose mitochondria were depolarized with carbonylcyanide m-chlorophenylhydrazone (CCCP). The release of TPMP+ due to CCCP treatment also permitted an estimation for the trans-mitochondrial membrane potential of -141.8 +/- 10 mV. These techniques of membrane potential measurements were found to be sensitive to changes in delta psi induced by a number of inhibitors and ionophores. The ability to measure the membrane potential of the type II pneumocyte, and the changes caused by various agents, should be useful in characterizing the functional responses of this pulmonary surfactant producing cell.  相似文献   

5.
1. We have monitored the plasma-membrane potential of lymphocytes by measuring the accumulation of the lipophilic cation methyltriphenylphosphonium (TPMP+) in the presence of the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). 2. The mitogen concanavalin A causes a decrease in TPMP+ accumulation by pig lymphocytes corresponding to a 3 mV depolarization with 2 1/2 min. Concanavalin A does not alter 86Rb+ uptake in the first 30 min. 3. In contrast concanavalin A increased TPMP+ accumulation and the rate of Rb+ uptake in mouse thymocytes. This is consistent with a previous proposal that the mitogen induces a hyperpolarization of mouse thymocytes as a result of stimulation of a Ca2+-dependent K+ channel. 4. Studies with the calcium ionophore A23187 and quinine (an inhibitor of the Ca2+-dependent K+ channel) suggest that the channel is partially closed in mouse resting thymocytes but is almost fully active in pig resting cells. Thus concanavalin A hyperpolarizes mouse thymocytes by activating the Ca2+-dependent K+ channel but cannot do so in pig lymphocytes because the channel is already maximally activated. 5. The 3mV depolarization of pig cells cannot be explained by a decrease in electrogenic K+ permeability.  相似文献   

6.
To probe the mechanism by which intracellular ATP, Na+, and Cl- influence the activity of the NaK2Cl cotransporter, we measured bumetanide-sensitive (BS) 86Rb fluxes in the osteosarcoma cell line UMR- 106-01. Under physiological gradients of Na+, K+, and Cl-, depleting cellular ATP by incubation with deoxyglucose and antimycin A (DOG/AA) for 20 min at 37 degrees C reduced BS 86Rb uptake from 6 to 1 nmol/mg protein per min. Similar incubation with 0.5 mM ouabain to inhibit the Na+ pump had no effect on the uptake, excluding the possibility that DOG/AA inhibited the uptake by modifying the cellular Na+ and K+ gradients. Loading the cells with Na+ and depleting them of K+ by a 2-3- h incubation with ouabain or DOG/AA increased the rate of BS 86Rb uptake to approximately 12 nmol/mg protein per min. The unidirectional BS 86Rb influx into control cells was approximately 10 times faster than the unidirectional BS 86Rb efflux. On the other hand, at steady state the unidirectional BS 86Rb influx and efflux in ouabain-treated cells were similar, suggesting that most of the BS 86Rb uptake into the ouabain-treated cells is due to K+/K+ exchange. The entire BS 86Rb uptake into ouabain-treated cells was insensitive to depletion of cellular ATP. However, the influx could be converted to ATP-sensitive influx by reducing cellular Cl- and/or Na+ in ouabain-treated cells to impose conditions for net uptake of the ions. The BS 86Rb uptake in ouabain-treated cells required the presence of Na+, K+, and Cl- in the extracellular medium. Thus, loading the cells with Na+ induced rapid 86Rb (K+) influx and efflux which, unlike net uptake, were insensitive to cellular ATP. Therefore, we suggest that ATP regulates a step in the turnover cycle of the cotransporter that is required for net but not K+/K+ exchange fluxes. Depleting control cells of Cl- increased BS 86Rb uptake from medium-containing physiological Na+ and K+ concentrations from 6 to approximately 15 nmol/mg protein per min. The uptake was blocked by depletion of cellular ATP with DOG/AA and required the presence of all three ions in the external medium. Thus, intracellular Cl- appears to influence net uptake by the cotransporter. Depletion of intracellular Na+ was as effective as depletion of Cl- in stimulating BS 86Rb uptake.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The mode of influx of 86Rb+, a K+ congener, to exponentially proliferating L1210 murine leukemia cells, incubated in a Krebs-Ringer buffer, has been characterised. The influx was composed of a ouabain-sensitive fraction (approx. 40%), a loop diuretic-sensitive fraction (approx. 40%) and a fraction which was insensitive to both types of inhibitor (approx. 15%). The fraction of ouabain-insensitive 86Rb+ influx, which was fully inhibited by furosemide (1 mM) or bumetanide (100 microM), was completely inhibited when Cl- was completely substituted by nitrate or gluconate ions, but was slightly (29 +/- 12%) stimulated if the Cl- was substituted by Br-. The substitution of Na+ by Li+, choline or tetramethylammonium ions inhibited the loop diuretic-sensitive fraction of 86Rb+ uptake. These results suggested that a component of 86Rb+ influx to L1210 cells was mediated via a Na+/K+/Cl- cotransporter. 86Rb+ efflux from L1210 cells which had been equilibrated with 86Rb+ and incubated in the presence or absence of 1 mM ouabain, was insensitive to the loop diuretics. Additionally, efflux rates were found to be independent of the external concentration of K+, suggesting that efflux was not mediated by K+-K+ exchange. The initial rate of 86Rb+ influx to L1210 cells in the plateau phase of growth was reduced to 44% of that of exponentially dividing cells, the reduction being accounted for by significant decreases in both ouabain- and loop diuretic-sensitive influx; these cells were reduced in volume compared to cells in the exponential phase of cell growth. In cells which had been deprived of serum for 18 h, and which showed an increase of the proportion of cells in the G1 phase of the cell cycle, the addition of serum stimulated an immediate increase in the furosemide-sensitive component of 86Rb+ influx. Diuretic-sensitive 86Rb+ influx was not altered by the incubation of the cells with 100 microM dibutyryl cyclic AMP, but was inhibited by 10 microM of the cross-linking agent nitrogen mustard (bis(2-chloro-ethyl)methylamine, HN2).  相似文献   

8.
When gastric microsomes were purified from resting and stimulated rabbit mucosae, they were found to be generally similar in (H+ + K+)-ATPase activity, peptide composition in single-dimension sodium dodecyl sulfate-gel electrophoresis, and in size. In the stimulated vesicles, optimal proton transport activity was found at pH 7.4, 20-50 mM KCl, and 1 mM ATP-Mg. However, in the case of resting vesicles, the presence of valinomycin and an inward Cl-gradient was also necessary for Mg-ATP-dependent proton transport. Measurement of K+ and Cl-diffusion potentials using 3,3-dipropylthiadicarboxocyanine iodide as a potential sensitive dye showed that both resting and stimulated vesicles developed K+ gradient-dependent potentials in the presence of an impermeant anion, but that Cl- gradient-dependent potentials were observed only in the stimulated preparation. 86Rb+ self-exchange was found in both types of vesicles, but Cl- self-exchange was confined to vesicles derived from stimulated mucosae. Putative inhibitors of anion conductance such as furosemide and anthracene 9-carboxylic acid blocked proton transport, Cl- conductance, 36Cl- uptake, and Cl- exchange. The inhibition of proton transport was overcome by valinomycin. ATPase activity in the presence of nigericin, an H+:K+ exchanger, was unaffected by these inhibitors. K+ conductance, Rb+ uptake, and Rb+ exchange were insensitive to these inhibitors. Thus, activation of acid secretion by the stimulated parietal cell appears to involve at least the appearance of a discrete Cl- conductance in the pump-associated membrane.  相似文献   

9.
The sodium-induced sperm motility initiation of the rat cauda epididymal sperm has been studied in different potassium concentrations. High K+ inhibited motility initiation. At a K+ concentration of 50 mM (concentration found in the rat cauda epididymidis), sperm motility was inhibited by 80%. K+ movement across the sperm membrane has been followed by using 86Rb+ as a marker for K+. When the 86Rb+ preloaded sperm were suspended in a sodium-free medium, there was a little efflux of 86Rb+. However, if they were suspended in a sodium-containing medium, the efflux rate was greatly increased. This increase in 86Rb+ efflux rate was associated with an initiation of sperm motility. Both 86Rb+ efflux and motility initiation were triggered by a K+ ionophore 18-crown-6 (2 X 10(-3)M). However, the ionophore-induced 86Rb+ efflux and motility initiation only occurred in the presence of extracellular Na+. Tetraethylammonium (TEA) chloride, which blocks K+ channels, inhibited motility initiation in a dose-dependent manner. Changes in the membrane potential of sperm have been followed using the fluorescent dye diO-C6-(3) whose fluorescence in sperm suspension changes markedly with changes in sperm membrane potential. During motility initiation, there was a fall in fluorescence of the dye due to increased partition into sperm cells. This observation may indicate a hyperpolarization of the sperm membrane during motility initiation. It was concluded that sperm motility initiation is associated with a complex ionic event. Na+ enters sperm cells in exchange with H+ and K+. This change in the permeability of the sperm membrane to ions is reflected by a change in the sperm membrane potential.  相似文献   

10.
Recent studies done with fetal and adult sheep and with monolayers of cultured rat alveolar type II cells suggest that active transport of Na+ across the lung epithelium may contribute to liquid absorption from air spaces, an essential component of the normal switch from placental to pulmonary gas exchange at birth. The goals of this work were 1) to study the ontogeny of cation transport in lung epithelial cells derived from fetal, newborn, and adult rabbits and 2) to determine the influence of premature birth, air breathing, labor, and postnatal lung maturation on K+ uptake in these cells. We harvested granular pneumonocytes by tracheal instillation of proteolytic enzymes followed by centrifugation of the dispersed cells over a discontinuous density gradient of metrizamide. This procedure yielded 65-90% granular pneumonocytes, of which more than 80% excluded vital dye. Using freshly isolated cells, we measured uptake of 86Rb+, which mimics transmembrane movement of K+, in the presence or absence of 10(-4) M ouabain and in the presence or absence of 5 X 10(-4) M furosemide or bumetanide. In adult rabbit studies, 86Rb+ uptake was twice as fast in lung epithelial cells (98 +/- 7 nmol X 10(6) cells-1 X h-1) as it was in alveolar macrophages (51 +/- 6 nmol X 10(6) cells-1 X h-1). Ouabain inhibited 55-60% of the uptake by pneumonocytes, and "loop" diuretics inhibited an additional 15-20%. The rate of 86Rb+ uptake in fetal cells was less than 10% (6 +/- 1 nmol X 10(6) cells-1 X h-1) of the rate in adult cells; ouabain inhibited 80-85% of 86Rb+ uptake in fetal cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Gastric vesicles enriched in (H+,K+)-ATPase were prepared from hog fundic mucosa and studied for their ability to transport K+ using 86Rb+ as tracer. In the absence of ATP, the vesicles elicited a rapid uptake of 86Rb+ (t 1/2 = 45 +/- 9 s at 30 degrees C) which accounted for both transport and binding. Transport was osmotically sensitive and was the fastest phase. It was not limited by anion permeability (C1- was equivalent to SO2-4) but rather by availability of either H+ or K+ as intravesicular countercation suggesting a Rb+-K+ or a Rb+-H+ exchange. Selectivity was K+ greater than Rb+ greater than Cs+ much greater than Na+,Li+. The capacity of vesicles which catalyzed the fast transport of K+ was 83 +/- 4% of maximal vesicular capacity of the fraction. Addition of ATP decreased both rate and extent of 86Rb+ uptake (by 62 and 43%, respectively with 1 mM ATP) with an apparent Ki of 30 microM. Such an effect was not seen on 22Na+ transport. ATP inhibition of transport did not require the presence of Mg2+, and inhibition was also produced by ADP even in the presence of myokinase inhibitor. On the other hand, 86Rb+ uptake was as strongly inhibited by 200 microM vanadate in the presence of Mg2+. Efflux studies suggested that ATP inhibition was originally due to a decrease of vesicular influx with little or no modification of efflux. Since ATP, ADP, and vanadate are known modulators of the (H+,K+)-ATPase, we propose that, in the absence of ATP, (H+,K+)-ATPase passively exchanges K+ for K+ or H+ and that ATP, ADP, and vanadate regulate this exchange.  相似文献   

12.
We describe a K+ transport system in Methanospirillum hungatei cells depleted of cytoplasmic K+ via an ammonia/K+ exchange reaction (Sprott, G. D., Shaw, K. M., and Jarrell, K. F. (1984) J. Biol. Chem. 259, 12602-12608). Ammonia-treated cells contained low concentrations of ATP and were unable to make CH4 or to transport 86Rb+. All of these properties were restored by CaCl2, MgCl2, or MnCl2, and not by CoCl2 or NiCl2. The Rb+ transport system had a Km of 0.42 and Vmax of 29 nmol/min X mg; K+ inhibited competitively. Both H2 and CO2 were required for appreciable transport, whereas air, valinomycin, or nigericin were potent inhibitors. The influx of Rb+ was electrogenic and associated with proton efflux, producing a delta pH (alkaline inside) in acidic media. In the absence of K+ (or Rb+), the activation of CH4 synthesis by Mg2+ produced little change in the cytoplasmic pH, showing that methanogenesis did not elicit a net efflux of protons. The pH optimum for transport was in the range 6.0-7.3 where the transmembrane pH gradient would contribute minimally to the proton motive force. Protonophores at pH 6.3 caused a partial decline in CH4 synthesis and the ATP content and dramatically collapsed Rb+ transport. These and other inhibitor experiments, coupled with the fact that the Rb+ gradient was too large to be in equilibrium with the proton motive force alone, suggest a role for both ATP and the proton motive force in Rb+ transport. Also, a role for K+ in osmoregulation is indicated.  相似文献   

13.
Using 86Rb+ as a marker for K+ permeability, we find that extracellular Ca-EGTA influences the rate of 86Rb+ efflux from erythrocyte ghosts preloaded with 86Rb+ and "buffered" Ca2+. At an internal free Ca2+, where the rate of 86Rb+ efflux is minimal and uninfluenced by either external EGTA or external Ca2+, external Ca-EGTA at 0.2-0.5 mM can raise the flux rate to as high as can be attained by raising internal Ca2+, in the presence of an excess externally either of Ca2+ or of EGTA. Higher concentrations of Ca-EGTA (up to 1-2 mM) diminish the flux rate. External Ca-EDTA or Mg-EDTA can substitute for Ca-EGTA in enhancing and suppressing flux rate. The peak rate is insensitive to external free Ca2+ but depends on internal Ca2+; internal Mg-EDTA does not substitute for internal Ca-EGTA. Thus, the erythrocyte membrane is asymmetric with respect to its interaction with Ca2+ and Ca-EGTA. Also, 22Na+ does not substitute for 86Rb+. The peak rate of 86Rb+ flux produced by external Ca-EGTA is diminished by chlorpromazine (0.1 mM) and augmented by 1-propranolol (25 microM), in the same way as the rate produced by increasing internal Ca2+. The results suggest that external Ca-EGTA enhances the affinity of internal Ca2+ for its receptor(s) which operate the K+-gate at the inner surface of the membrane. At external concentrations of Ca-EGTA above 1-2 mM, 86Rb+ flux rate again rises with increase of Ca-EGTA. This phenomenon does not depend upon internal Ca2+, is not affected by chlorpromazine or by 1-propranolol, and is associated with an enhanced permeability to 22Na+, inulin, and haemoglobin.  相似文献   

14.
At a concentration of 10(-6)m, nigericin and monactin inhibited growth of Streptococcus faecalis, and the inhibition was reversed by addition of excess K(+). In the presence of certain antibiotics, the cells exhibited increased permeability to certain cations; internal Rb(+) was rapidly lost by exchange with external H(+), K(+) Rb(+), and, more slowly, with Na(+) and Li(+). No effect was observed on the penetration of other small molecules. Cation exchanges induced by nigericin and monactin were metabolically passive and apparently did not involve the energy-dependent K(+) pump. When the cells were washed, the cytoplasmic membrane recovered its original impermeability to cations. By use of monactin, we prepared cells whose K(+) content had been completely replaced by other cations, and the metabolic characteristics of K(+)-depleted cells were studied. Cells containing only Na(+) glycolyzed almost as well as did normal ones and, under proper conditions, could accumulate amino acids and orthophosphate. These cells also incorporated (14)C-uracil into ribonucleic acid but incorporation of (14)C-leucine into protein was strictly dependent upon the addition of K(+). When K(+) or Rb(+) was added to sodium-loaded cells undergoing glycolysis, these ions were accumulated by stoichiometric exchange for Na(+). From concurrent measurements of the rate of glycolysis, it was calculated that one mole-pair of cations was exchanged for each mole of adenosine triphosphate produced.  相似文献   

15.
The uptake of 86Rb+ was assayed in isolated rat pancreatic acinar cells to determine the effect of calcium and carbamoylcholine on the ouabain-sensitive and ouabain-insensitive components. The presence of calcium in the medium bathing the cells during the preincubation and the main incubation periods was needed to preserve in optimum conditions the uptake of 86Rb+, the stimulation by carbamoylcholine and the sensitivity to ouabain. In the presence of calcium, the ouabain-sensitive component of 86Rb+ uptake was higher than the ouabain-insensitive. The ouabain-sensitive component was 3-times lower in cells incubated in a medium lacking calcium and containing 1 mM EGTA, as compared to cells incubated in the presence of calcium. Carbamoylcholine, at 5 X 10(-4) M, stimulated the uptake of 86Rb+ and this effect depended on the presence of calcium in the bathing medium. Maximal stimulation by carbamoylcholine was reached at 0.2 mM calcium. The nett stimulation by carbamoylcholine was inhibited up to 85% by 1 mM ouabain. As judged by digitonin-disruption of plasma membrane, the above-indicated effects were limited to a cytoplasmic pool of 86Rb+ and a leaky plasma membrane could be ruled out. The results suggest that in rat pancreatic acinar cells, carbamoylcholine stimulated the ouabain-sensitive uptake of 86Rb+ and required the presence of calcium in the bathing medium.  相似文献   

16.
Regulation of Na+ transport in brown adipose tissue.   总被引:2,自引:0,他引:2       下载免费PDF全文
In order to test the hypothesis that Na+, K+-ATPase (Na+,K+-dependent ATPase) is involved in the noradrenaline-mediated stimulation of respiration in brown adipose tissue, the effects of noradrenaline on Na+,K+-ATPase in isolated brown-fat-cell membrane vesicles, and on 22Na+ and K+ (86Rb+) fluxes across the membranes of intact isolated cells, were measured. The ouabain-sensitive fraction of the K+-dependent ATPase activity in the isolated membrane-vesicle preparation was small and was not affected by the presence of noradrenaline in the incubation media. The uptake of 86Rb+ into intact hormone-sensitive cells was inhibited by 80% by ouabain, but it was insensitive to the presence of noradrenaline. 22Na+ uptake and efflux measured in the intact cells were 8 times more rapid than the 86Rb+ fluxes and were unaffected by ouabain. This indicated the presence of a separate, more active, transport system for Na+ than the Na+,K+-ATPase. This is likely to be a Na+/Na+ exchange activity under normal aerobic conditions. However, under anaerobic conditions, or conditions simulating anaerobiosis (2 mM-NaCN), the unidirectional uptake of Na+ increased dramatically, while efflux was unaltered.  相似文献   

17.
We have studied the effect of various amines on the rate of release of 86Rb from the occluded state of dog kidney Na,K-ATPase formed by pre-incubation of the enzyme with 86Rb. In the presence of MgPi, various amines act like K+ or Rb+ in blocking the release of 86Rb from one of two sites for occlusion (the "s" site). Of 38 amines tested, tetrapropylamine and various benzyl amines exhibit the highest affinity; the K1/2 for these compounds is 2-5 mM. In the presence of ATP, when 86Rb is presumably released towards the intracellular face of the pump in the normal mode of operation, 86Rb release is blocked by the presence of amine, but only if the amine is also included in a preincubation with MgPi. The data are consistent with a model in which the interaction of amine with one of the transport sites (the "f" site) prevents the E2----E1 transformation that is stimulated by ATP. When 86Rb deocclusion from the f site has occurred in the presence of amine, the lone 86Rb at the s site can be released in the presence of ATP if the amine is removed from the medium. This suggests that a single 86Rb ion at the s site can be released to the intracellular face of the membrane, and therefore that transport can occur with only one K+ site occupied. The amine that blocks release of one 86Rb ion does not itself become occluded: (a) The interaction of amine and ATP is only seen when both ligands are present in the medium; (b) the effects of amines are not "remembered" after a brief exposure to a rinse medium; (c) with the vanadate-inhibited enzyme, benzyltriethylamine and tetrapropylamine are only weakly effective in blocking 86Rb release from the s site; and (d) organic cations exhibit very low affinity in competition with 86Rb for occlusion at equilibrium. Thus the results are consistent with the idea that monofunctional amines block by binding to the f site but that, unlike K+ and Rb+, they do not become occluded. In contrast, at equilibrium ethylenediamine prevents 86Rb occlusion in a competitive manner, suggesting the possibility of occlusion of the bifunctional amine.  相似文献   

18.
Nimigean CM 《Nature protocols》2006,1(3):1207-1212
Here we describe a procedure for incorporating ion channels into lipid vesicles (liposomes) and functional characterization of the channel population by assaying radioactive isotope uptake into these proteoliposomes. The technique as described will work only for potassium channels but can be easily modified, as suggested in the text, for other ion channels and transporters. Purified ion channel proteins in detergent micelles are combined with solubilized lipids. Detergent is subsequently removed from protein-lipid complexes by gel filtration or dialysis into high potassium (high [K+]) buffer. After freezing-thawing and sonication, the resultant larger liposomes are passed over another gel-filtration column to exchange an extraliposomal high [K+] to a low [K+] buffer, thus establishing a large K+ gradient across the liposomal membrane. Trace 86Rb is then added to the extraliposomal space and the reaction begins. If the ion channel is permeable to K+, the K+ inside exits the liposomes down its concentration gradient and the 86Rb outside accumulates in the intraliposomal space until equilibrium is reached. The reaction time course is monitored by measurement of accumulated 86Rb after removal of external 86Rb over an ion-exchange column. The 86Rb flux assay takes 2-5 hours depending on the reaction rate and the number of desired time points.  相似文献   

19.
Incubation of L1210 murine leukemia cells in vitro with 10 microM of the bifunctional alkylating agent bis(2-chloroethyl)methylamine (nitrogen mustard, HN2) for 10 min brought about a fall of more than 99.9% in their ability to form colonies when the cells were suspended in 0.5% nutrient agar. Incubation with HN2 also inhibited the influx of the potassium congener 86Rb+ to exponentially proliferating L1210 cells in a concentration-dependent manner. This inhibition was specific and was accounted for by a reduction of a diuretic-sensitive component of 86Rb+ influx, identified in the preceding paper (Wilcock, C. and Hickman, J.A. (1988) Biochim. Biophys. Acta 946, 359-367) as being mediated by a Na+/K+/Cl- cotransporter. Inhibition by 10 microM HN2 was complete after a 3-h incubation. There was no inhibition at this time of the ouabain-sensitive component of 86Rb+ influx, mediated by Na+/K+-ATPase. After 3 h of incubation with 10 microM HN2 there was also no change in the membrane potential of the treated cells as measured by the distribution of the [3H]TPMP+, no decrease in cellular ATP concentration and no change in intracellular pH, and the ability of the cells to exclude the vital dye Trypan blue was not significantly different from control values. These effects of HN2, therefore, appeared to follow lethal damage, but precede cell death. In the stationary phase of L1210 cell growth, the component of HN2 and diuretic-sensitive K+ influx to L1210 cells was reduced, whilst the component constituting the HN2-insensitive ouabain-sensitive sodium pump was increased. The monofunctional alkylating agent MeHN1 (2-chloroethyldimethylamine) which cannot cross-link cellular targets and has no antitumor activity, did not inhibit 86Rb+ influx to L1210 cells when incubated at equimolar or equitoxic concentrations to HN2. Intracellular potassium concentration was maintained close to control values of 138 +/- 10 mM in HN2-treated cells because of an approx. 35% fall in cell volume. The results suggest that the Na+/K+/Cl- cotransporter is a selectively inhibitable target for HN2, and the lesion is discussed with reference to the cytotoxic effects of this agent.  相似文献   

20.
Squid axons display a high activity of Na+/Ca2+ exchange which is largely increased by the presence of external K+, Li+, Rb+ and NH+4. In this work we have investigated whether this effect is associated with the cotransport of the monovalent cation along with Ca2+ ions. 86Rb+ influx and efflux have been measured in dialyzed squid axons during the activation (presence of Ca2+i) of Ca2+o/Na+i and Ca2+i/Ca2+o exchanges, while 86Rb+ uptake was determined in squid optic nerve membrane vesicles under equilibrium Ca2+/Ca2+ exchange conditions. Our results show that although K+o significantly increases Na+i-dependent Ca2+ influx (reverse Na+/Ca2+ exchange) and Rb+i stimulates Ca2+o-dependent Ca2+ efflux (Ca2+/Ca2+ exchange), no sizable transport of rubidium ions is coupled to calcium movement through the exchanger. Moreover, in the isolated membrane preparation no 86Rb+ uptake was associated with Ca2+/Ca2+ exchange. We conclude that in squid axons although monovalent cations activate the Na+/Ca2+ exchange they are not cotransported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号