首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amount of missing data in many contemporary phylogenetic analyses has substantially increased relative to previous norms, particularly in supermatrix studies that compile characters from multiple previous analyses. In such cases the missing data are non‐randomly distributed and usually present in all partitions (i.e. groups of characters) sampled. Parametric methods often provide greater resolution and support than parsimony in such cases, yet this may be caused by extrapolation of branch lengths from one partition to another. In this study I use contrived and simulated examples to demonstrate that likelihood, even when applied to simple matrices with little or no homoplasy, homogeneous evolution across groups of characters, perfect model fit, and hundreds or thousands of variable characters, can provide strong support for incorrect topologies when the matrices have non‐random distributions of missing data distributed across all partitions. I do so using a systematic exploration of alternative seven‐taxon tree topologies and distributions of missing data in two partitions to demonstrate that these likelihood‐based artefacts may occur frequently and are not shared by parsimony. I also demonstrate that Bayesian Markov chain Monte Carlo analysis is more robust to these artefacts than is likelihood. © The Willi Hennig Society 2011.  相似文献   

2.
Quantifying branch support using the bootstrap and/or jackknife is generally considered to be an essential component of rigorous parsimony and maximum likelihood phylogenetic analyses. Previous authors have described how application of the frequency-within-replicates approach to treating multiple equally optimal trees found in a given bootstrap pseudoreplicate can provide apparent support for otherwise unsupported clades. We demonstrate how a similar problem may occur when a non-representative subset of equally optimal trees are held per pseudoreplicate, which we term the undersampling-within-replicates artifact. We illustrate the frequency-within-replicates and undersampling-within-replicates bootstrap and jackknife artifacts using both contrived and empirical examples, demonstrate that the artifacts can occur in both parsimony and likelihood analyses, and show that the artifacts occur in outputs from multiple different phylogenetic-inference programs. Based on our results, we make the following five recommendations, which are particularly relevant to supermatrix analyses, but apply to all phylogenetic analyses. First, when two or more optimal trees are found in a given pseudoreplicate they should be summarized using the strict-consensus rather than frequency-within-replicates approach. Second jackknife resampling should be used rather than bootstrap resampling. Third, multiple tree searches while holding multiple trees per search should be conducted in each pseudoreplicate rather than conducting only a single search and holding only a single tree. Fourth, branches with a minimum possible optimized length of zero should be collapsed within each tree search rather than collapsing branches only if their maximum possible optimized length is zero. Fifth, resampling values should be mapped onto the strict consensus of all optimal trees found rather than simply presenting the ≥ 50% bootstrap or jackknife tree or mapping the resampling values onto a single optimal tree.  相似文献   

3.
Although 11 studies have addressed the systematics of the four families and 281 fish species of the ecomorphologically diverse Anostomoidea, none has proposed a global hypothesis of relationships. We synthesized these studies to yield a supermatrix with 463 morphological characters among 174 ingroup species, and inferred phylogeny with parsimony and Bayesian optimization. We evaluated the applicability of the supermatrix approach to morphological datasets, tested its sensitivity to missing data, determined the impact of homoplastic characters on phylogenetic resolution, and determined the distribution of homologies and homoplasies on the topology. Despite more than 60% missing data, analyses supported the monophyly of all families, and phylogenetic structure degraded only with inclusion of species with high percentages of missing data and in analyses limited to homoplasies. The latter differs modestly from the full matrix indicating phylogenetic signal in homoplastic characters. Character distributions differ across the phylogeny, with a greater prevalence of homologies at deeper nodes and homoplasies nearer the tips than expected by chance. This may suggest early diversification into distinct bauplans with subsequent diversification of faster evolving character systems. The morphological supermatrix approach is powerful and allows integration of classical data with modern methods to examine the evolution of multiple character systems.  相似文献   

4.
ABSTRACT: BACKGROUND: Through next-generation sequencing, the amount of sequence data potentially available for phylogenetic analyses has increased exponentially in recent years. Simultaneously, the risk of incorporating 'noisy' data with misleading phylogenetic signal has also increased, and may disproportionately influence the topology of weakly supported nodes and lineages featuring rapid radiations and/or elevated rates of evolution. RESULTS: We investigated the influence of phylogenetic noise in large data sets by applying two fundamental strategies, variable site removal and long-branch exclusion, to the phylogenetic analysis of a full plastome alignment of 107 species of Pinus and six Pinaceae outgroups. While high overall phylogenetic resolution resulted from inclusion of all data, three historically recalcitrant nodes remained conflicted with previous analyses. Close investigation of these nodes revealed dramatically different responses to data removal. Whereas topological resolution and bootstrap support for two clades peaked with removal of highly variable sites, the third clade resolved most strongly when all sites were included. Similar trends were observed using long-branch exclusion, but patterns were neither as strong nor as clear. When compared to previous phylogenetic analyses of nuclear loci and morphological data, the most highly supported topologies seen in Pinus plastome analysis are congruent for the two clades gaining support from variable site removal and long-branch exclusion, but in conflict for the clade with highest support from the full data set. CONCLUSIONS: These results suggest that removal of misleading signal in phylogenomic datasets can result not only in increased resolution for poorly supported nodes, but may serve as a tool for identifying erroneous yet highly supported topologies. For Pinus chloroplast genomes, removal of variable sites appears to be more effective than long-branch exclusion for clarifying phylogenetic hypotheses.  相似文献   

5.
Kozak et al. (2015, Syst. Biol., 64: 505) portrayed the inference of evolutionary history among Heliconius and allied butterfly genera as a particularly difficult problem for systematics due to prevalent gene conflict caused by interspecific reticulation. To control for this, Kozak et al. conducted a series of multispecies coalescent phylogenetic analyses that they claimed revealed pervasive conflict among markers, but ultimately chose as their preferred hypothesis a phylogenetic tree generated by the traditional supermatrix approach. Intrigued by this seemingly contradictory set of conclusions, we conducted further analyses focusing on two prevalent aspects of the data set: missing data and the uneven contribution of phylogenetic signal among markers. Here, we demonstrate that Kozak et al. overstated their findings of reticulation and that evidence of gene‐tree conflict is largely lacking. The distribution of intrinsic homoplasy and incongruence homoplasy in their data set does not follow the pattern expected if phylogenetic history had been obscured by pervasive horizontal gene flow; in fact, noise within individual gene partitions is ten times higher than the incongruence among gene partitions. We show that the patterns explained by Kozak et al. as a result of reticulation can be accounted for by missing data and homoplasy. We also find that although the preferred topology is resilient to missing data, measures of support are sensitive to, and strongly eroded by too many empty cells in the data matrix. Perhaps more importantly, we show that when some taxa are missing almost all characters, adding more genes to the data set provides little or no increase in support for the tree.  相似文献   

6.
Phylogenetic relationships of 79 caniform carnivores were addressed based on four nuclear sequence-tagged sites (STS) and one nuclear exon, IRBP, using both supertree and supermatrix analyses. We recovered the three major arctoid lineages, Ursidae, Pinnipedia, and Musteloidea, as monophyletic, with Ursidae (bears) strongly supported as the basal arctoid lineage. Within Pinnipedia, Phocidae (true seals) were sister to the Otaroidea [Otariidae (fur seals and sea lions) and Odobenidae (walrus)]. Phocid subfamily and tribal designations were supported, but the otariid subfamily split between fur seals and sea lions was not. All family designations within Musteloidea were strongly supported: Mephitidae (skunks), Ailuridae (monotypic red panda), Mustelidae (weasels, badgers, otters), and Procyonidae (raccoons). A novel hypothesis for the position of the red panda was recovered, placing it as branching after Mephitidae and before Mustelidae+Procyonidae. Within Mustelidae, subfamily taxonomic changes are considered. This study represents the most comprehensive sampling to date of the Caniformia in a molecular study and contains the most complete molecular phylogeny for the Procyonidae. Our data set was also used in an empirical examination of the effect of missing data on both supertree and supermatrix analyses. Sequence for all genes in all taxa could not be obtained, so two variants of the data set with differing amounts of missing data were examined. The amount of missing data did not have a strong effect; instead, phylogenetic resolution was more dependent on the presence of sufficient informative characters. Supertree and supermatrix methods performed equivalently with incomplete data and were highly congruent; conflicts arose only in weakly supported areas, indicating that more informative characters are required to confidently resolve close species relationships.  相似文献   

7.
For the predominantly southern hemisphere plant group Styphelioideae (Ericaceae) published sequence datasets of five markers are now available for all except one of the 38 recognised genera. However, several markers are highly incomplete therefore missing data is problematic for producing a genus level phylogeny. We explore the relative utility of supertree and supermatrix approaches for addressing this challenge, and examine the effects of missing data on tree topology and resolution. Although the supertree approach returned a more conservative hypothesis, overall, both supermatrix and supertree analyses concurred in the topologies they returned. Using multiple genes and a dataset of variably complete taxa we found improved support for the monophyly and position of the tribes and genus level relationships. However, there was mixed support for the Richeeae tribe appearing one node basal to the Cosmelieae tribe or vice versa. It is probable that this will only be resolved through further sequencing. Our study supports previous findings that the amount of data is more critical than the completeness of the dataset in estimating well-resolved trees. Our results suggest that a “serendipitous” scaffolding approach that includes a mixture of well and poorly sequenced taxa can lead to robust phylogenetic hypotheses.  相似文献   

8.
Although long-branch attraction (LBA) is frequently cited as the cause of anomalous phylogenetic groupings, few examples of LBA involving real sequence data are known. We have found several cases of probable LBA by analyzing subsamples from an alignment of 18S rDNA sequences for 133 metazoans. In one example, maximum parsimony analysis of sequences from two rotifers, a ctenophore, and a polychaete annelid resulted in strong support for a tree grouping two "long-branch taxa" (a rotifer and the ctenophore). Maximum-likelihood analysis of the same sequences yielded strong support for a more biologically reasonable "rotifer monophyly" tree. Attempts to break up long branches for problematic subsamples through increased taxon sampling reduced, but did not eliminate, LBA problems. Exhaustive analyses of all quartets for a subset of 50 sequences were performed in order to compare the performance of maximum likelihood, equal-weights parsimony, and two additional variants of parsimony; these methods do differ substantially in their rates of failure to recover trees consistent with well established, but highly unresolved phylogenies. Power analyses using simulations suggest that some incorrect inferences by maximum parsimony are due to statistical inconsistency and that when estimates of central branch lengths for certain quartets are very low, maximum-likelihood analyses have difficulty recovering accepted phylogenies even with large amounts of data. These examples demonstrate that LBA problems can occur in real data sets, and they provide an opportunity to investigate causes of incorrect inferences.  相似文献   

9.
Recent reviews of the construction of large phylogenies have focused on supertree methods that involve separate analyses of data sets and subsequent integration of the resulting trees. Here, we consider the alternative method of analyzing all character data simultaneously. Such 'supermatrix' analyses use information from each character directly and enable straightforward incorporation of diverse kinds of data, including characters from fossils. The approach has been extended by the development of new methods, including model-based techniques for analyzing heterogeneous data and hierarchical methods for constructing extremely large trees. Recent work also suggests that the problem of missing data in supermatrix analyses has been overstated. Although the supermatrix approach is not suited for all cases, we suggest that its inherent strengths will ensure that it will continue to have a central role in inferring large phylogenetic trees from diverse data.  相似文献   

10.
Supermatrix and supertree are two methods for constructing a phylogenetic tree by using multiple data sets. However, these methods are not a panacea, as conflicting signals between data sets can lead to misinterpret the evolutionary history of taxa. In particular, the supermatrix approach is expected to be misleading if the species-tree signal is not dominant after the combination of the data sets. Moreover, most current supertree methods suffer from two limitations: (i) they ignore or misinterpret secondary (non-dominant) phylogenetic signals of the different data sets; and (ii) the logical basis of node robustness measures is unclear.To overcome these limitations, we propose a new approach, called SuperTRI, which is based on the branch support analyses of the independent data sets, and where the reliability of the nodes is assessed using three measures: the supertree Bootstrap percentage and two other values calculated from the separate analyses: the mean branch support (mean Bootstrap percentage or mean posterior probability) and the reproducibility index.The SuperTRI approach is tested on a data matrix including seven genes for 82 taxa of the family Bovidae (Mammalia, Ruminantia), and the results are compared to those found with the supermatrix approach. The phylogenetic analyses of the supermatrix and independent data sets were done using four methods of tree reconstruction: Bayesian inference, maximum likelihood, and unweighted and weighted maximum parsimony. The results indicate, firstly, that the SuperTRI approach shows less sensitivity to the four phylogenetic methods, secondly, that it is more accurate to interpret the relationships among taxa, and thirdly, that interesting conclusions on introgression and radiation can be drawn from the comparisons between SuperTRI and supermatrix analyses. To cite this article: A. Ropiquet et al., C. R. Biologies 332 (2009).  相似文献   

11.
Taxon sampling may be critically important for phylogenetic accuracy because adding taxa can help to subdivide misleading long branches. Although the idea that added taxa can break up long branches was exemplified by a study of "incomplete" fossil taxa, the issue of taxon completeness (i.e., proportion of missing data) has been largely ignored in most subsequent discussions of taxon sampling and long-branch attraction. In this article, I use simulations to test the ability of incomplete taxa to subdivide long branches and improve phylogenetic accuracy in situations of potential long-branch attraction. The results show that for most methods and conditions examined, adding taxa that are only 50% complete may provide similar benefits to adding the same number of complete taxa (suggesting that the advantages of increased taxon sampling may be obtained with less data than previously considered). For parsimony, taxa that are less complete (5% to 25% complete) may often have limited ability to rescue analyses from long-branch attraction. In contrast, highly incomplete taxa can be surprisingly beneficial when using model-based methods. The results also suggest the importance of model-based methods in phylogenetic analyses that combine molecular and fossil data.  相似文献   

12.
A comprehensive phylogeny of papilionoid legumes was inferred from sequences of 2228 taxa in GenBank release 147. A semiautomated analysis pipeline was constructed to download, parse, assemble, align, combine, and build trees from a pool of 11,881 sequences. Initial steps included all-against-all BLAST similarity searches coupled with assembly, using a novel strategy for building length-homogeneous primary sequence clusters. This was followed by a combination of global and local alignment protocols to build larger secondary clusters of locally aligned sequences, thus taking into account the dramatic differences in length of the heterogeneous coding and noncoding sequence data present in GenBank. Next, clusters were checked for the presence of duplicate genes and other potentially misleading sequences and examined for combinability with other clusters on the basis of taxon overlap. Finally, two supermatrices were constructed: a "sparse" matrix based on the primary clusters alone (1794 taxa x 53,977 characters), and a somewhat more "dense" matrix based on the secondary clusters (2228 taxa x 33,168 characters). Both matrices were very sparse, with 95% of their cells containing gaps or question marks. These were subjected to extensive heuristic parsimony analyses using deterministic and stochastic heuristics, including bootstrap analyses. A "reduced consensus" bootstrap analysis was also performed to detect cryptic signal in a subtree of the data set corresponding to a "backbone" phylogeny proposed in previous studies. Overall, the dense supermatrix appeared to provide much more satisfying results, indicated by better resolution of the bootstrap tree, excellent agreement with the backbone papilionoid tree in the reduced bootstrap consensus analysis, few problematic large polytomies in the strict consensus, and less fragmentation of conventionally recognized genera. Nevertheless, at lower taxonomic levels several problems were identified and diagnosed. A large number of methodological issues in supermatrix construction at this scale are discussed, including detection of annotation errors in GenBank sequences; the shortage of effective algorithms and software for local multiple sequence alignment; the difficulty of overcoming effects of fragmentation of data into nearly disjoint blocks in sparse supermatrices; and the lack of informative tools to assess confidence limits in very large trees.  相似文献   

13.
Background and Aims The largest subfamily of orchids, Epidendroideae, represents one of the most significant diversifications among flowering plants in terms of pollination strategy, vegetative adaptation and number of species. Although many groups in the subfamily have been resolved, significant relationships in the tree remain unclear, limiting conclusions about diversification and creating uncertainty in the classification. This study brings together DNA sequences from nuclear, plastid and mitochrondrial genomes in order to clarify relationships, to test associations of key characters with diversification and to improve the classification.Methods Sequences from seven loci were concatenated in a supermatrix analysis for 312 genera representing most of epidendroid diversity. Maximum-likelihood and parsimony analyses were performed on this matrix and on subsets of the data to generate trees and to investigate the effect of missing values. Statistical character-associated diversification analyses were performed.Key Results Likelihood and parsimony analyses yielded highly resolved trees that are in strong agreement and show significant support for many key clades. Many previously proposed relationships among tribes and subtribes are supported, and some new relationships are revealed. Analyses of subsets of the data suggest that the relatively high number of missing data for the full analysis is not problematic. Diversification analyses show that epiphytism is most strongly associated with diversification among epidendroids, followed by expansion into the New World and anther characters that are involved with pollinator specificity, namely early anther inflexion, cellular pollinium stalks and the superposed pollinium arrangement.Conclusions All tested characters show significant association with speciation in Epidendroideae, suggesting that no single character accounts for the success of this group. Rather, it appears that a succession of key features appeared that have contributed to diversification, sometimes in parallel.  相似文献   

14.
The plastid-bearing members of the Cryptophyta contain two functional eukaryotic genomes of different phylogenetic origin, residing in the nucleus and in the nucleomorph, respectively. These widespread and diverse protists thus offer a unique opportunity to study the coevolution of two different eukaryotic genomes within one group of organisms. In this study, the SSU rRNA genes of both genomes were PCR-amplified with specific primers and phylogenetic analyses were performed on different data sets using different evolutionary models. The results show that the composition of the principal clades obtained from the phylogenetic analyses of both genes was largely congruent, but striking differences in evolutionary rates were observed. These affected the topologies of the nuclear and nucleomorph phylogenies differently, resulting in long-branch attraction artifacts when simple evolutionary models were applied. Deletion of long-branch taxa stabilized the internal branching order in both phylogenies and resulted in a completely resolved topology in the nucleomorph phylogeny. A comparison of the tree topologies derived from SSU rDNA sequences with characters previously used in cryptophyte systematics revealed that the biliprotein type was congruent, but the type of inner periplast component incongruent, with the molecular trees. The latter is indicative of a hidden cellular dimorphism (cells with two periplast types present in a single clonal strain) of presumably widespread occurrence throughout cryptophyte diversity, which, in consequence, has far-reaching implications for cryptophyte systematics as it is practiced today.  相似文献   

15.
Molecular data offer great potential to resolve the phylogeny of living taxa but can molecular data improve our understanding of relationships of fossil taxa? Simulations suggest that this is possible, but few empirical examples have demonstrated the ability of molecular data to change the placement of fossil taxa. We offer such an example here. We analyze the placement of snakes among squamate reptiles, combining published morphological data (363 characters) and new DNA sequence data (15,794 characters, 22 nuclear loci) for 45 living and 19 fossil taxa. We find several intriguing results. First, some fossil taxa undergo major changes in their phylogenetic position when molecular data are added. Second, most fossil taxa are placed with strong support in the expected clades by the combined data Bayesian analyses, despite each having >98% missing cells and despite recent suggestions that extensive missing data are problematic for Bayesian phylogenetics. Third, morphological data can change the placement of living taxa in combined analyses, even when there is an overwhelming majority of molecular characters. Finally, we find strong but apparently misleading signal in the morphological data, seemingly associated with a burrowing lifestyle in snakes, amphisbaenians, and dibamids. Overall, our results suggest promise for an integrated and comprehensive Tree of Life by combining molecular and morphological data for living and fossil taxa.  相似文献   

16.
Missing data are a widely recognized nuisance factor in phylogenetic analyses, and the fear of missing data may deter systematists from including characters that are highly incomplete. In this paper, I used simulations to explore the consequences of including sets of characters that contain missing data. More specifically, I tested whether the benefits of increasing the number of characters outweigh the costs of adding missing data cells to a matrix. The results show that the addition of a set of characters with missing data is generally more likely to increase phylogenetic accuracy than decrease it, but the potential benefits of adding these characters quickly disappear as the proportion of missing data increases. Furthermore, despite the overall trend, adding characters with missing data does decrease accuracy in some cases. In these situations, the missing data entries are not themselves misleading, but their presence may mimic the effects of limited taxon sampling, which can positively mislead. Criteria are discussed for predicting whether adding characters with missing data may increase or decrease accuracy. The results of this study also suggest that accuracy can be increased to a surprising degree by (1) "filling the holes" in a data matrix as much as possible (even when relatively few taxa are missing data), and (2) adding fewer characters scored for all taxa rather than adding a larger number of characters known for fewer taxa. Missing data can also be eliminated from an analysis through the exclusion of incomplete taxa rather than incomplete characters, but this approach may reduce the usefulness of the analysis and (in some cases) the accuracy of the estimated trees.  相似文献   

17.
Although long-branch attraction, the incorrect grouping of long lineages in a phylogeny because of systematic error, has been identified as a potential source of error in phylogenetic analysis for almost two decades, no empirical examples of the phenomenon exist. Here, I outline several criteria for identifying long-branch attraction and apply these criteria to 18S ribosomal DNA (rDNA) sequence data for 13 insects. Parsimony and minimum evolution with p distances group the two longest branches together (those leading to Strepsiptera and Diptera). Simulation studies show that the long branches are long enough to attract. When a tree is assumed in which Strepsiptera and Diptera are separated and many data sets are simulated for that tree (using the parameter estimates for that tree for the original data), parsimony analysis of the simulated data consistently groups Strepsiptera and Diptera. Analyses of the 18S rDNA sequences using methods that are less sensitive to the problem of long-branch attraction estimate trees in which the long branches are separate.  相似文献   

18.
Total evidence requires exclusion of phylogenetically misleading data   总被引:8,自引:1,他引:7  
Treating all available characters simultaneously in a single data matrix (i.e. combined or simultaneous analysis) is frequently called the 'total evidence' (TE) approach, following Kluge's introduction of the term in 1989, quoting Carnap (1950) . However, the general principle and one of the possible procedures involved in its application are often confused. The principle, first enunciated within the context of inductive logic by Carnap in 1950, did not refer to a particular procedure, and TE meant using all relevant knowledge, rather than a combined analysis of all available data. Using TE, all relevant knowledge should be taken into account, including the fact that some data are probably misleading as indicators of species phylogeny and should be discarded. Based on the assumption that molecular partitions have some biological significance (process partitions obtained from nonrandom homoplasy or from 'processes of discord'), we suggest that separate analyses constitute an important exploratory investigation, while the phylogenetic tree itself should be produced by a final combined analysis of all relevant data. Given that the concept of process partitions is justified and that reliability cannot be evaluated using any robustness measure from a single combined analysis, the analysis of multiple data sets involves five steps: (1) perform separate analyses without consensus trees in order to assess reliability of clades through their recurrence and improve the detection of artifacts; (2) test significance of character incongruence, using, for example, pairwise ILD tests in order to identify the sets responsible for incongruence; (3) replace likely misleading data with question marks in the combined data matrix; (4) perform simultaneous analysis of this matrix without the misleading data; (5) assess the reliability of clades found by the combined analysis by computing their recurrence within the previous separate analyses, giving priority to repeatability.  相似文献   

19.
Long-Branch Abstractions   总被引:11,自引:1,他引:11  
Recent attention has been focused on the sensitivities of various tree reconstructing algorithms to sequence rate heterogeneity (long-branch attraction). Phylogenetic conclusions from two recent empirical studies have been indicted as artifacts attributable to long-branch attraction. Siddall et al. (1995) concluded that Myxozoa are cnidarians and sister group to Polypodium based on 18S rDNA and morphology. Hanelt et al. (1996) argued that this result is due to long-branch attraction. Whiting et al. (1997) concluded that the Strepsiptera are sister group to Diptera based on parsimony analysis of 18S rDNA, 28S rDNA, and morphology. Huelsenbeck (1997) argued that this result also is attributable to long-branch attraction. We demonstrate that the analyses and arguments dismissing these results as the effects of long-branch attraction are fundamentally flawed. The criteria employed by these authors were applied arbitrarily by them to the groups that they did not want, and yet using those same criteria, there is more reason to exclude other taxa besides Polypodium and there is more reason to disbelieve monophyly of Diptera than monophyly of Strepsiptera with Diptera. Moreover, it is asserted, long-branch attraction cannot explain the presence of nematocysts in Myxozoa and halteres in Strepsiptera. For these reasons, and in light of the demonstration that long branches cannot attract each other in their mutual absence, we conclude that the monophyly of Myxozoa + Polypodium and Strepsiptera + Diptera is not due to long-branch attraction. We suggest that maximum likelihood methods are extremely sensitive to taxon and character sampling and that these data sets are demonstrative of the long-branch repulsion problem.  相似文献   

20.
The hares and rabbits belonging to the family Leporidae have a nearly worldwide distribution and approximately 72% of the genera have geographically restricted distributions. Despite several attempts using morphological, cytogenetic, and mitochondrial DNA evidence, a robust phylogeny for the Leporidae remains elusive. To provide phylogenetic resolution within this group, a molecular supermatrix was constructed for 27 taxa representing all 11 leporid genera. Five nuclear (SPTBN1, PRKCI, THY, TG, and MGF) and two mitochondrial (cytochrome b and 12S rRNA) gene fragments were analyzed singly and in combination using parsimony, maximum likelihood, and Bayesian inference. The analysis of each gene fragment separately as well as the combined mtDNA data almost invariably failed to provide strong statistical support for intergeneric relationships. In contrast, the combined nuclear DNA topology based on 3601 characters greatly increased phylogenetic resolution among leporid genera, as was evidenced by the number of topologies in the 95% confidence interval and the number of significantly supported nodes. The final molecular supermatrix contained 5483 genetic characters and analysis thereof consistently recovered the same topology across a range of six arbitrarily chosen model specifications. Twelve unique insertion-deletions were scored and all could be mapped to the tree to provide additional support without introducing any homoplasy. Dispersal-vicariance analyses suggest that the most parsimonious solution explaining the current geographic distribution of the group involves an Asian or North American origin for the Leporids followed by at least nine dispersals and five vicariance events. Of these dispersals, at least three intercontinental exchanges occurred between North America and Asia via the Bering Strait and an additional three independent dispersals into Africa could be identified. A relaxed Bayesian molecular clock applied to the seven loci used in this study indicated that most of the intercontinental exchanges occurred between 14 and 9 million years ago and this period is broadly coincidental with the onset of major Antarctic expansions causing land bridges to be exposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号